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One of the prime paradigms for complex temporal dynamics, the motion of an inelastic ball
bouncing on a sinusoidally oscillating table, is revisited. Using extensive numerical simulations,
we address the not yet conclusively settled problem of the occurrence of chaos in the partially
elastic case. We systematically investigate the spectrum of long-time solutions as function of the
initial conditions and system parameters. Subsequently, we generalize the bouncing ball system
by taking the velocity dependence of the coefficient of restitution into account and exemplarily
demonstrate the drastic impact of such a generalization on the overall dynamics.
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1. Introduction

The bouncing ball system has been the subject
of intense studies both in experiments and theory
during the past decades. It consists of a point-like
particle bouncing on a vertically and sinusoidally
oscillating table. Conceptionally simple, it has
revealed a plethora of diverse dynamical behavior
and has become one of the prototypical examples
in nonlinear dynamics and chaos theory.

In addition, it has proven to be valuable for
understanding more complex systems, such as prob-
ability machines [Hansen et al, 1995], particle
transport on conveyor belts [El hor & Linz, 2005],
quantum billiard [Stéckmann, 2007], and chaos
control [Vargas et al., 2009]. Its history can be
traced back to a paper by Fermi [1949] and it
started to become prominent over three decades ago
[Zaslavskii, 1978]. For an overview of the exten-
sive literature on the subject, we refer the reader
to the references given at the end of this paper
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and — especially for the early literature — to the
article by Lichtenberg et al. [1980] and the book by
Tufillaro et al. [1992].

The main aim of this paper is to review
the properties of the bouncing ball system in
detail. We also investigate some of the questions
that have not yet been sufficiently clarified. For
example, some authors [Pieranski et al., 1985;
Tufillaro & Albano, 1986; Tufillaro et al., 1986;
Celaschi & Zimmermann, 1987; Mello & Tufillaro,
1987; Tufillaro, 1994a, 1994b; Kowalik et al., 1988]
have observed period-doubling and chaos in the
bouncing ball system, whereas others believe that
“the period-doubling route to chaos should not be
observed” and “a generic trajectory of the par-
tially elastic bouncing ball is eventually periodic”
[Luck & Mehta, 1993]. Furthermore, no overall sys-
tematic investigation of the long-term behavior of
the bouncing ball problem depending on initial con-
ditions and parameters has been presented yet.
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We address these questions in the first part of
this paper after reviewing the standard theoretical
model for the bouncing ball. In the course of the
investigation, we will answer the question of exis-
tence of chaos in a positive way. A scan of all acces-
sible parameters will show that chaotic solutions,
although present, are not dominating the parame-
ter space. In the larger part of the parameter space,
sticking solutions do prevail.

Usually, when modeling the bouncing ball
system, the ball is approximated as a point par-
ticle, air friction is excluded, and impacts are
supposed to happen instantaneously without affect-
ing the oscillations of the table. The motion of
the ball is restricted to the vertical direction by
assuming a perfectly planar table. Hence, until
now almost all theoretical models have completely
neglected, or included only in an approximative way
[Luna-Acosta, 1990], a number of physical effects
which can be expected to play a vital role in
experiments. To our knowledge, the only in-depth
investigation was done by Naylor et al. [2002]
concerning the relevance of air friction.

For this reason, in the second part of this paper
we examine the influence of one of the hitherto
neglected effects, namely the velocity dependence of
the coefficient of restitution. This effect will always
be present, even if experiments are performed under
vacuum conditions. It will turn out that changes
are crucial and care should be taken when com-
paring theoretical findings with experiments. The
final section of this paper is devoted to the exam-
ination of average jump heights of the ball above
the table.

2. Basics
2.1. Basic equations

The trajectory of the ball between impacts is com-
pletely determined by Newton’s law. It is therefore
sufficient to consecutively identify the impact times
t; and lift-off velocities v; of the ball immediately
after the ith impact of the ball on the table. Veloc-
ities in the laboratory frame will be called absolute
velocities and velocities in the comoving frame of
the table relative velocities. Let dg be the offset at
t = 0, w the angular frequency, and A the amplitude
of the oscillations of the table z = Asin(wt + dp).
The incoming velocity v and the outgoing velocity
v; are linked via the so-called impact relation

v; = (14 €)s; — ev], (1)

where s; = Aw cos(wtjt1 + dp) denotes the veloc-
ity of the table at time ¢;;1 and € the coefficient
of restitution. A straightforward calculation yields
(for details, see for example [Tufillaro et al., 1992])
a system of coupled iterated maps for the time evo-
lution of t; and v;

0= Asin(wti + 50) + v; (ti+1 — ti)

1 .
- §g(tz’+1 — ;)% — Asin(wtiy1 +60)  (2)

vi+1 = (1 + €)Aw cos(wt;t1 + dp)

—elvi — g(tiy1 — ti)], (3)

where the successive impact times ¢;11 result from
the implicit Eq. (2). It is often convenient to switch
to dimensionless quantities, namely to a normalized
time 7 = (wt + dp)/27 (or ¢ = 7 mod 1, whenever
only the phase of the oscillations of the table is rel-
evant), a relative lift-off velocity

[v — Aw cos(wt + dp)]w

W - ’ (4)
g
and a normalized acceleration or driving strength
A 2
r— 2 (5)
g

Heights X will be expressed in units of 272g/w?.
Apart from a factor of 1/7 in I' our notation is
equivalent to the one introduced in the papers by
Mehta and Luck [1990], Luck and Mehta [1993].
The two-dimensional system of difference equa-
tions (2)—(3) then reads

0= 2—7r2[sin(27r7'i) — sin(277i41)]

+ [m + g cos(27r7'i)} (Ti41 — 7i)
— (Tig1 — Ti)2 (6)

Wi+1 = —€ {Wl — 2(Ti+1 — Ti)

+ 5[005(2777'1-) — COS(27T7'1'+1)]}‘ (7)

In numerical computations the only difficult
task is to solve Eq. (2) or equivalently Eq. (6). In
accordance with most of the work done in the lit-
erature, we employed the bisection method to this
purpose. Our numerical calculations are all based on
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the system of Eqgs. (2)-(3). This makes our results
more amenable to a direct comparison with exper-
imental data and the larger part of the published
theoretical findings. However, in this paper we gen-
erally present our results in dimensionless units.
Hereby, the number of parameters can be limited
to two, i.e. the coefficient of restitution e and the
normalized acceleration I'. Initial conditions are ¢q
and Wo.

2.2. Types of solutions

Experimentally and theoretically three different
types of solutions can be distinguished in the long-
term limit. We give a short review.

2.2.1.

In some regions of parameter space periodic solu-
tions can be initiated by a suitable choice of initial
conditions. In Fig. 1(a) the ball ends up repeating a
series consisting of a high jump followed by a lower
jump forever after completing a transient regime,
i.e. in an orbit of period two. For one-periodic orbits
(not shown in the figure) the phase and lift-off veloc-
ity as well as their region of stability can be calcu-
lated analytically. To our knowledge this was first
done by Pippard [1989]. For the region of stability
one gets

;Zﬂmgrgw{[izm]Z [%r}é
(8)

Here, m denotes the number of oscillations of the
table between subsequent impacts.

Periodic solutions

2.2.2.

We mentioned in the introduction that the existence
of chaos in the bouncing ball system is still a matter
of debate. In any case, orbits which at first sight do
not exhibit any sign of periodicity, do exist. The
first few impacts of such a representative orbit are
shown in Fig. 1(b). A more in-depth analysis can
be found in Secs. 3.1-3.3 of this paper.

Chaotic orbits

2.2.3. Sticking solutions

If the downward acceleration of the table is smaller
than gravity and the relative velocity of the incom-
ing ball is low enough, it may perform a number
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Fig. 1. Representative time evolution of different types of
solutions in the bouncing ball system. Trajectories of the ball:
thin line _, motion of the table: thick line —. (a) Periodic
solution. (b) Chaotic solution. (c) Sticking solution.

of smaller and smaller jumps before getting com-
pletely stuck on the table. Numerical and theoreti-
cal work has been done by Luck and Mehta [1993]
concerning the size and relevance of this so-called
“locking region” in phase space. No analytic expres-
sion could be derived for it until now. After getting
stuck, the ball will either constantly stick to the
table (I' < 1) or lift off again at the point given
by ¢ = arcsin(1/T")/2m with zero relative velocity
(I' > 1). Whenever the ball gets stuck at least twice,
such an orbit is called a sticking solution. Other-
wise, we speak of free solutions. From an analytical
point of view sticking solutions are always periodic
of nature, due to identical lift-off conditions (see,
however, Sec. 3.1).

2.3. Trapping region

Obviously, a lower bound for the outgoing velocity
of the ball is given by the minimum velocity of the
table W = 0 or v = —Aw. For ¢ < 1 an upper
limit for the outgoing velocity of the ball can also
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be derived, indicating (apart from transients) the
upper bound of this so-called trapping region for
the velocity of the ball. Tufillaro et al. [1992] have
shown that
14+ 3¢)l
VT — ( + 6) (9)

maxe 1—em’
where VL is an absolute velocity expressed in
units of mg/w. Another result in relative quantities
has been put forward by Luck and Mehta [1993]

M _ €
Wmax_l_eg

(3+e)£

ol

41—2F 132F2 10
+ [4( 6)p+(+6>g . (10)

Here, we present a third and novel result which
will prove more accurate for some purposes. As
starting point, we choose Eq. (1). The speed of
the table s; can always be restricted to its maxi-
mum value Aw. Moreover, the difference in height
between two consecutive impacts can amount to no
more than 2A. This fact establishes a link between
the outgoing velocity v; and the maximum incoming
velocity v;_ ;. Equation (1) hence reads

vir1 < (14 €)Aw + €(v; + 24/gA). (11)
By means of induction, we obtain

k
Vi1 <
!

k-1
+ Z €2\ /gA+ Fvippr. (12)
1=0

|
—

(14 €)Aw

I
=)

In the long-term limit this reduces to

(14 ¢€)Aw + 2¢64/gA
1—e¢ ’

Vit1 < Upax = (13)

which can be written in dimensionless units as

Vi = 2T (14)

and shows that for nonelastic balls ¢ < 1 there is

always a finite bound V7 ..

To compare the three different results, V'

WEM and V*

max max?

T

max’
we first note that the difference

and V*

max

between VL

max amounts to

_ 20— VD)

T *
_ = . 1
Vmax Vmax (1 - 6)7‘( ( 5)
This relation proves that VL < V.  only for

I'<1.

The comparison with WM needs slightly more
thought, since the transition from relative to abso-
lute quantities and vice versa is now no longer
symmetrical. Obviously, in the first case (transi-
tion from relative to absolute velocities) one has
to add the maximum table velocity I'/m = (Aw) -
(w/mg) to the relative velocity WEM "which yields

max?

VEM — WLM 4 (T'/r). In the second case (tran-
sition from absolute to relative velocities) I'/7 also
has to be added to — not subtracted from — the
absolute velocities V%, or VI . In Sec. 2.1 we
have pointed out that our computational algorithms
rely on absolute velocities. Therefore, we limit our-
selves in this paper to a comparison for absolute
velocities.

Calculations can be shortened by neglecting the
first, always positive term of the radiant in Eq. (10).
One obtains

VIM _ LM

r
max max T
Since the right-hand side of Eq. (16) is equal
to VL., it follows that in the laboratory frame
VI isthe most accurate upper bound for the out-
going velocity of the ball for I' < 1. V7, . constitutes

max
a stricter bound for the case I' > 1.

3. Constant Coefficient of
Restitution

3.1. Bifurcation diagrams and
Lyapunov exponents

As a first step it is instructive to fix € and vary
only the driving I'. To obtain the graph shown in
Fig. 2(a) we proceeded as follows: at the lowest vis-
ible I'-value we initiated a sequence of jumps start-
ing from the initial conditions (¢g, Wy) indicated in
the figure caption. We did not take into account
the first 20 000 impacts in order to eliminate tran-
sients. We next plotted the impact phase ¢ for
the subsequent 30000 impacts. Finally, we slightly
increased I' and used the last values (¢50 000, Us0000)
as new initial conditions. In experiments, this con-
forms to letting the ball jump on the table while
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Fig. 2. (a) Bifurcation diagram for ¢ = 0.5. Black: regu-
lar solutions, red: sticking solutions, green: chaotic solutions.
¢o =0,Wp =2/3 at I' = 1.03. (b) Corresponding Lyapunov
exponents o1 __, 0o —. Also shown is the zero-line.

adiabatically increasing the strength of the table’s
oscillations. We employed the same procedure for
all bifurcation diagrams in this paper, except for
the ones shown in Fig. 4.

Bifurcation cascades such as in Fig. 2(a) are
well known from the literature [Tufillaro et al., 1992;
Tufillaro, 1994a, 1994b; Celaschi & Zimmermann,
1987] and can also be observed in experiments for
a limited parameter range [Pieranski et al., 1985;
Pippard, 1989; Zimmermann et al., 1992; Pieranski,
1988; Pierariski & Malecki, 1986]. Because of the
observable period doubling route to chaos it is no
surprise to find also chaotic behavior, in Fig. 2
between I' ~ 1.7 and I' =~ 1.76. Generally, the
existence of a positive Lyapunov exponent is a
strong evidence for chaos, indicating that neighbor-
ing phase-space trajectories diverge exponentially
fast. In Fig. 2(b) we therefore plotted the associated
Lyapunov exponents o1 and oo, where o1 < go. To
our knowledge only two values for Lyapunov expo-
nents for a sinusoidally oscillating table have been
published before by Oliveira and Gongalves [1997].
Despite extensive checks we could not reproduce
their values.

It is, however, obvious from Fig. 2 that our
results do within computational accuracy agree
with mandatory features that can be derived ana-
lytically: both exponents are negative for stable
periodic orbits; at bifurcation points one correctly
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obtains o9 = 0. In addition, the constant
baseline, around which o; and o, are arranged
symmetrically, can also be explained theoretically.
This feature is well known from two-dimensional
systems with |det D;(x;)] = v = const., e.g. the
Hénon map [Hénon, 1976; Klein, 1992] and the
bouncing ball in Everson’s high-bounce approxima-
tion [Everson, 1986]. Here, det D;(x;) denotes the
functional determinant of a two-dimensional system
of difference equations describing the evolution of
the model system at time 4. In this case, the sum of
the two Lyapunov exponents amounts to

o1+ 02 =Inv, (17)

explaining the symmetry. Moreover, Lyapunov
exponents can be calculated from the absolute
values of eigenvalues of the matrices J; =

2;10 Dy (xy). These are either real or complex con-
jugate, where the latter case explains the regions
with a constant baseline. Finally, Eq. (17) remains
valid under the weaker condition |det J;| = v/ - ¢(i),
where v > 0 is a real number and c(i) is a positive
valued discrete and bounded function. In our case,
the relevant system of difference equations is given
by Eqgs. (6) and (7) where x; = (¢;, W;). After some
calculations we get

d)i 2 VVz
det D; = 18
¢ (Wz ‘ Wiyt (18)
and hence
Wo
detJ; = 2 —2. 19
e € W, (19)

Therefore, the weaker condition is fulfilled with
v = € and c(i) = Wy/W;. The constant baseline
in Figs. 2(b) and 3(b) is given by Ine.

The fact that oo becomes positive above I' =
1.7 in Fig. 2 gives strong evidence for the existence
of chaos. A more detailed view of that region, which
is not shown here, reveals that other features such
as periodic windows are mirrored correctly by the
sign of g9. As it will turn out, however, Lyapunov
exponents alone are not sufficient to unambiguously
identify chaotic behavior.

If the acceleration is increased above I' = 1.76,
the ball abruptly changes its behavior from free
jumps to sticking solutions. We also calculated
Lyapunov exponents for sticking solutions. Since an
infinite number of jumps occurs during the sticking
process, it is not evident how Lyapunov exponents
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Fig. 3. (a) Bifurcation diagram for ¢ = 0.94. Black: regu-
lar solutions, red: sticking solutions, green: chaotic solution.
¢o = 0,Wy = 09582 at I' = 0.35. (b) Corresponding
Lyapunov exponents o1 __, og —. Also shown is the zero-line.

can reasonably be defined for sticking solutions
at all. Therefore, we proceeded the following way:
orbits where less than 100 impacts outside of the
locking region occurred were completely neglected.
For orbits with a larger number of impacts than
100 the first 50 impacts after lift-off were discarded
to reduce the influence of transients. It is obvi-
ous that the exponents calculated this way have
a limited explanatory power for orbits where the
maximum number of impacts between two sticking
processes is not very high, as in the case of the orbits
shown in Fig. 2. For lower dissipation and higher
accelerations, sticking orbits are typically much
longer.

In Fig. 3(a) bifurcation diagram for e = 0.94
is presented together with the corresponding
Lyapunov exponents. The sticking orbits shown
there consist of sequences of up to many thousand
free jumps. Features which are known from free
orbits, such as the symmetry around a baseline, are
consequentially reproduced much better.

Whenever Lyapunov exponents could be calcu-
lated for sticking solutions in the parameter range
frome=0toe =099 and I' = 0 to I' = 8 with-
out violating the criterion given above, we found a
positive sign for go. This permits the following con-
clusion: sticking solutions, at least those consisting
of longer series of free jumps, typically diverge expo-
nentially between sticking processes. If the locking

region is large enough and the number of free jumps
small enough, the ball will get stuck again before
the divergence of neighboring trajectories becomes
dominating. In this case, sticking solutions will
appear periodic, except for small deviations.

For very long sequences of jumps divergence
will prevail. In fact, a closer examination of the
sticking orbits in Fig. 3(a) reveals that the num-
ber of jumps between two sticking processes varies
between a few hundreds and a couple of thousands
for the same orbit. In numerical calculations peri-
odicity is no longer present. We can even suspect
the bulk of the seemingly chaotic orbits in Fig. 3(a)
to consist of sticking orbits where the ball has not
got stuck yet. This suspicion is confirmed, if the
number of iterations is step by step lowered (down
to 5000) or increased (up to 100000). The num-
ber of chaotic orbits likewise decreases or increases,
whereas the number of sticking orbits increases or
decreases. Luck and Mehta [1993] have argued for
an exponential relationship between the number of
iterations and the probability of the ball to get stuck
in this case.

Finally, we once again want to point out that
this effect is only due to small numerical errors
which can never be avoided. From a analytical
point of view, sticking solutions must always be
periodical. However, Kowalik et al. [1988] could
observe a similar behavior experimentally and have
shaped the term “self-reanimating chaos” for it,
which we will adopt. Of course, in experiments
small deviations from initial conditions are always
present and could play a role similar to numer-
ical errors in the theory. Whenever we speak of
chaos or chaotic orbits without explicitly alluding
to “self-reanimating” we will assume that the ball
does not get stuck (except at most once in a tran-
sient regime). The region in parameter space where
self-reanimating chaos appears cannot be unam-
biguously delimited, since the outcome depends on
computational precision.

As we are also interested in giving a more gen-
eral picture of possible scenarios, we scanned the
phase space for several values of e by selecting
100 uniformly distributed initial conditions from
the trapping region. The resulting long-term solu-
tions for € = 0.5 are shown in Fig. 4. This picture
is typical for high and medium range dissipation.
For the free solutions in Fig. 4(a), we observe a
number of bifurcation trees starting from the one
periodic orbits as described in Sec. 2.2.1. In addi-
tion, smaller bifurcation trees can be found, which
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Fig. 4. (a) Bifurcation diagram for € = 0.5. Initial conditions
scanned 10 x 10. (a) Free solutions. (b) Sticking solutions.
Explanation of the marked lines: (D) the ball gets stuck, 2 the
ball lifts off, (3 first impact after lift-off.

do not start from period one orbits. Both chaotic
and periodic solutions do coexist for some values
of v and € depending on the initial conditions in
Fig. 4(a). The same holds true for the sticking
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solutions shown in Fig. 4(b) which do coexist with
free solutions in large regions of parameter space.
They follow a pattern of seemingly more regular
regions (e.g. after I' &~ 4.60 and I' =~ 7.79) followed
by rather irregular motion. For an interpretation of
this structuring we refer the reader to Sec. 4.3.

For increasing values of the coefficient of resti-
tution period one orbits and bifurcation trees move
closer and closer and eventually “coalesce” (cf.
[Celaschi & Zimmermann, 1987]). Moreover, for
low dissipation sticking solutions set in before
the period doubling route can develop fully, as
in Fig. 3(a). These consist of long sequences
of jumps and fill out large parts of parameter
space. More details will be given in the following
sections.

3.2. Attractors

In Fig. 5 we give detailed views of an attractor
for ¢ = 0.5 and I' = 1.75, for which no sticking
occurs in the long-term limit. This has been ver-
ified by numerically calculating up to one million
impacts for orbits on the attractor. Less detailed
pictures of similar attractors can be found in the
papers by Celaschi and Zimmermann [1987] and

024 0245 025 0255
0.8 —— : : : :
0.75 ¢ ] 10.576
0.7}t ]
W 10573
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0.55 L L L 0.567
0.0 0.1 0.2
0
: : 0.5702
r 4 0.5701
8 1 0.57
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0.2508 0.251 0.2512 0.2514

Fig. 5.
small scales.

Fractal composition of the attractor for e = 0.5 and I' = 1.75. ¢g = 0.25, Wy = 0. Structures can be found at arbitrary
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Tufillaro et al. [1992]. These attractors are appar-
ently fractal. Attractors for the self-reanimating
chaos have been calculated by Luck and Mehta
[1993]. Their graphs could be reproduced by
us successfully. The structure of these attractors
appears to be fractal, too. The same holds true
for next impact maps, which we also calculated
(see [Tufillaro, 1994a] for an example). We did not
determine fractal dimensions or other more tangi-
ble criteria to verify fractal properties of attrac-
tors or next impact maps. This remains a task for
future work.

Nonetheless, it is possible to distinguish
between chaos and “self-reanimating” chaos with-
out relying on fractal properties of the respective
attractors. To this aim we refer the reader to Fig. 3
in the paper by Luck and Mehta [1993] for the size
of the locking region for ¢ = 0.5. From that figure it
is evident that the locking region and the attractor
shown in Fig. 5 do not overlap. Extensive checks
did show that this is commonly the case for strange
attractors appearing at the end of fully developed
bifurcation cascades.

It can therefore be concluded that such attrac-
tors indeed are chaotic and that chaos in the bounc-
ing ball system does exist. Obviously, Luck and
Mehta’s assumption that a “typical trajectory will
explore its whole phase space and end up in the
locking region after a finite number of collisions”
does not generally hold for arbitrary values of e
and I'. Only for large ¢ and I' our numerical stud-
ies do confirm Luck and Mehta’s results, inasmuch
as chaotic regions become smaller and smaller and
eventually give way to the “self-reanimating” type
of numerical chaos.

3.3. Basin of attraction

Several examples of basins of attraction can be
found in papers by Isoméki [1989] and Tufillaro
et al. [1992]. Because these authors only distin-
guish between regular and sticking solutions, we
here give a more complete picture, characterizing
also chaotic behavior. The structure of the basin of
attraction can be very simple in case of one sin-
gle global attractor, but also rather complex as in
Fig. 6 where we scanned the trapping region and
indicated which initial conditions belong to which
type of attractor. For ¢ = 0.5 and I' = 1.45 in
Fig. 6(a) an attractive sticking solution and a peri-
odic point at (¢o, Wy) ~ (0.124,0.666) coexist. If
the acceleration is slightly increased to I' = 1.54,

-0.5 -0.25 0.0 0.25 0.5

&

Fig. 6. Basin of attraction for ¢ = 0.5. Black: regular
solutions, green: chaotic solutions, red: sticking solutions.
(a) T =145. (b) I' = 1.54.

the picture shown in Fig. 6(b) results. The sticking
solution still exists, but the period one orbit has
bifurcated into a period two orbit at (¢g, Wp) =~
(0.157,0.654) and (¢1,W;) =~ (0.102,0.679). In
addition, a chaotic attractor exists. The structure of
the basin of attraction is apparently fractal, as could
be verified by magnifying cutouts of the graph. The
white space in the upper part of Figs. 6(a) and 6(b)
does not belong to the trapping region and therefore
has not been investigated by us.

3.4. Global behavior for fixed initial
conditions

If the oscillation of the table is started in its min-
imum position with the ball at rest, the resulting
orbits are of the type shown in Fig. 7(a). Above
e = 0.99 we did not acquire any data. Of course,
for I' < 1 the ball sticks to the table forever. But
also above I' = 1 sticking solutions do prevail. This
is not astonishing because of our particular choice
of initial conditions. In addition, we observe a num-
ber of stable periodic orbits, especially for small e
and I'. These consist mostly of one-periodic orbits
and the ensuing bifurcation cascades, followed by
chaotic regions.

The large chaotic region in the upper part of the
figure is of the self-reanimating type, as we verified
by varying the number of iterations (between 10 000
and 100000). The larger the number of iterations
the smaller this region gets.
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(a)

(b)

Fig. 7. Long-term behavior of orbits depending on I' and e.
Black: regular solutions, red: sticking solutions, green: chaotic
solutions. (a) Fixed initial conditions ¢g9 = —0.25, Wy = 0.
(b) Fixed initial conditions ¢g = 0, Wy = 125.

Moreover, self-reanimating chaos is more wide-
spread in the upper part of Fig. 7(b) than in
Fig. 7(a). This is in perfect agreement with the
remarks made so far, since in Fig. 7(a) initially the
ball sticks to the table already once. It is therefore
more likely to get caught a second time before the
maximum number of calculations is reached than in
Fig. 7(b), where we have chosen a rather high ini-
tial velocity, slightly above the long-term maximum
velocity which we have determined numerically for
e = 0.99 and I' = 8 by scanning the trapping
region.

Another salient difference between the two
graphs consists in the large number of periodic
orbits for I' < 1 in Fig. 7(b). Other features, espe-
cially for lower e are comparatively similar.

3.5. Global behavior for scanned
initial conditions

To get a more complete picture of the solution struc-
ture it is necessary to vary the initial conditions
on a broader scale. For this purpose we choose 100
different, uniformly distributed initial conditions
from the trapping region and register which differ-
ent types of solution occur for different values of €
and I'. The result is shown in Fig. 8, where we also
indicate the lower border of the region of stability
of one-periodic solutions, which can be calculated
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Fig. 8. Possible types of solutions. Initial conditions scanned
10 x 10. Blue lines indicate the lower border of the region
of stability for one-periodic solutions. (a) Periodic solutions.
(b) Chaotic solutions. (c) Sticking solutions.

from Eq. (8)

am —T 20

R — (20)
The finger-like structure in Fig. 8(a) results from
period-one orbits and the ensuing bifurcation cas-
cades. The chaotic orbits in Fig. 8(b) play a rather
subordinate role, if the self-reanimating chaos for
large values of € is not taken into account. As can
be seen from Fig. 8(c), sticking solutions are by
far dominating. They exist in the largest part of
parameter space and are mostly globally stable. For
increasing I" this effect can at least be qualitatively
understood. Let us suppose that due to a small
disturbance (e.g., a numerical inaccuracy) the ball
takes off a little later. If the table is oscillating very
quickly, the next impact will be at a much later
phase than for slow oscillations. For periodic solu-
tions the ball is thus more likely to leave the region
of stability. For chaotic solutions the ball will visit a
vaster portion of phase space so that the probability
of ending up in the locking region increases.
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4. Velocity Dependent Coefficient
of Restitution

4.1. Model

From experiments [Raman, 1918, 1920; Tabor,
1948; Goldsmith, 1960; Bernstein, 1977; Maurone &
Wunderlich, 1978; Maurone, 1979; Brody, 1979;
Smith et al., 1981; Reed, 1985; Falcon et al.,
1998; Gugan, 2000; Stensgaard & Lacgsgaard, 2001;
Leconte et al., 2006] it is known that the coeffi-
cient of restitution e should generally depend on
the impact velocity w’ = v} — s; measured relatively
to the table.

On the one hand, it is generally accepted that
a number of different physical effects contribute
to this dependence. For example, energy is trans-
fered from the ball to the table on impact by excit-
ing various vibrational modes of the table. This
effect can only be neglected, if the thickness of the
table is large compared to the diameter of the ball.
Other energy loss mechanisms include elastic and
viscoelastic waves as well as plastic deformations of
the ball or the table [Reed, 1985; Johnson, 1996;
Falcon et al., 1998]. On the other hand, compet-
ing, sometimes even contradictory theories do exist
which describe the dependence of ¢ on w' (com-
pare [Tabor, 1948; Goldsmith, 1960; Johnson, 1996;
Falcon et al., 1998; Reed, 1985]). This is due to
the fact that the underlying energy dissipation pro-
cesses are rather complex and depend heavily on
the material properties of the ball and the table.

We therefore use data from an experiment by
Stensgaard and Laegsgaard [2001] for a steel ball

10 T T T T T T

0.0 0.25 0.5 0.75 1.0
|w'| [m/s]

Fig. 9. Dependence of the coefficient of restitution € on the
impact velocity for a steel ball bouncing on a steel block.
Marked data points from Stensgaard and Leegsgaard [2001].
Straight lines indicate a piecewise linear fit of the data used
for our modeling.

bouncing on a smooth steel block. The most rele-
vant of their findings for our purposes is reproduced
in Fig. 9 and indicates that for increasing impact
velocity the coefficient of restitution e crosses over
from a constant to a behavior decreasing with the
impact velocity. We approximate the data points
by a constant value ¢g = 0.94 for [w'| < |w)| =
0.19m/s and by a linear fit for |w)| < |uw'| <
1.0m/s. As results from most experiments cited
above suggest, an increase in energy dissipation at
higher impact velocities is generic for most materi-
als and also for velocities well above |w'| = 1.0m/s.
Since beyond this point no reliable interpolation can
be made based on the experimental data by Stens-
gaard and Laegsgaard [2001], we immediately inter-
rupted our calculations, if |w'| exceeded 1.0m/s.

By introducing the step function © the func-
tional dependence of the coefficient of restitution e
can be expressed in a compact way

e(wiy1) = eo[l + KO(wy — wiy ) (wiyg — wy)],
(21)

where k = 0.42 s/m. The basic equation (6) of the
bouncing ball problem remains unchanged, whereas
Eq. (7) now becomes

Wis1 = —e(Wiyy) {Wi — 2(piv1 — b4)
r
+ ;[cos(?mbi) - cos(27r¢i+1)]}
— ¢ [1 + %gn@(wg — W)
X (Wi — W‘/q):| {Wi — 2(¢iv1 — ¢i)
T
+ ;[cos(%rd)i) - cos(27rqz§i+1)]}. (22)

Since W; 1 is decreasing quadratically for [W;_ | >
(1/k — wy)w/2mg, it is possible to delimitate
the trapping region even further. We will not
demonstrate this, since it is only of interest for
the particular model discussed here. Finally, from
Eq. (22) it is evident that from now on, it
is necessary to take into account w or equiva-
lently the frequency f of the oscillations as an
additional parameter. We exemplarily focus on
f = 10Hz and f = 20Hz for the remainder of
our study.
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4.2. Bifurcation diagrams and
Lyapunov exponents

To obtain Figs. 10 and 11 we have initiated the
sequence of jumps at the same phase and with
the same velocity as in Fig. 3. A comparison of
all three figures clearly shows that the outcome is
altered drastically. For velocity-dependent e, self-
reanimating chaos becomes dominant at consid-
erably larger values of ~. Even before it sets in,
changes are crucial. For example, in Fig. 10(a) a
bifurcation cascade can be found at about I' = 1.5
which starts from an orbit of period three and which
is not present in Fig. 3(a) at all. Generally, alter-
ations are more pronounced for f = 20Hz. This
could be expected, since velocities are expressed
in units of 7/w. A given impact speed W' thus
corresponds to a higher unscaled impact speed w’
for low frequencies than for high frequencies and
the coefficient of restitution ¢ depends on unscaled
quantities.

From Fig. 8, it can be inferred that for small
values of constant e, periodic and chaotic orbits are
more likely to be stable. It can therefore be sus-
pected that in the velocity-dependent case, periodic
and chaotic solutions are more widespread, since the
“average” coefficient of restitution is lowered. This
effect should be more salient for low frequencies. In
fact, this point can be corroborated by calculating

(a) 0.5 e e

0.25

@ 00 F ]

-0.25 |

|4
s 00 -\(J:I
-1.0 ¢ [ 1
0 ‘ 1 ‘ 2 l 3 ‘ 4
R

Fig. 10. (a) Bifurcation diagram for ¢9 = 0.94 and f =
10 Hz. Black: regular solutions, red: sticking solutions, green:
chaotic solutions. ¢g = 0, Wy = 0.9582 at I' = 0.35. (b) Lya-
punov exponents o1 __, o2 —. Also shown is the zero-line.
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(@ 05
f=2H:|

T

220+ ‘ ‘ |

Fig. 11. (a) Bifurcation diagram for ¢g = 0.94 and f =
20 Hz. Black: regular solutions, red: sticking solutions, green:
chaotic solutions. ¢g9 = 0, Wy = 0.9582 at I' = 0.35.
(b) Lyapunov exponents o; _, 0o —. Also shown is the
zero-line.

scanned bifurcation diagrams as in Fig. 4 (which are
not shown here) and by the global solution struc-
ture which will be treated in the following sections.

4.3. Global behavior for fixed initial
conditions

To obtain a general picture of the dynamics we first
need to model the velocity dependence of the coef-
ficient of restitution for arbitrary values of ¢y =
e(w’ = 0). We proceed exactly as in Sec. 4.1, i.e.
for |w}| < 0.19m/s we fix € at a constant value of €
ranging from zero to 0.99 and assume a linear decay
for 0.19 m/s < |w'| < 1.0 m/s. Whenever € becomes
negative, we interrupt our calculations. Especially
for very low values of ¢ this model is probably not
very accurate. However, we are primarily interested
in finding out whether the velocity dependence of
the coefficient of restitution has significant effects
at all. To this aim our simple model is sufficient.
For the same fixed initial conditions (¢g, W) =
(—0.25,0) as in Fig. 7 we present the resulting
types of long-term solution depending on I' and
€0 for f = 10Hz in Fig. 12(a) and for f = 20Hz
in Fig. 13(a). White regions indicate where cal-
culations were interrupted because of a physically
impossible negative coefficient of restitution. As
a first important point it should be noted, that
the size of the region where periodic and chaotic
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solutions exist is enlarged in comparison to the case
of a constant coefficient of resolution as in Sec. 3.4.
As expected, this effect is more pronounced for
f =10Hz.

Secondly, it is noteworthy that around I' = 4.6
and I' = 7.8 isolated columns of sticking solutions
do exist for f = 10Hz. For f = 20Hz peaks can
be found at the same positions, too. This is due
to orbits, where the velocities of the ball and the
table are equal or almost equal immediately at the
first impact after lift-off. The position of the orbits
where the ball gets caught without rebouncing at
all can be easily determined: The lift-off velocity of
the ball after getting stuck amounts to

r 1 -1
V== in—=-——- 23
| = —cosarcsin - (23)
In order for the ball and the table to have the
same velocity at the first impact after lift-off it
is necessary that V; = Ar = (n + 1/2)/2 +
arcsin(1/T") /27 or

1 1
O:arcsinf+ F2—1—7T<n+2>. (24)

This equation can be solved numerically. For n =
1 one obtains I' =~ 4.60 and for n = 2 the result
is I' & 7.79. Moreover,the existence of these orbits
explains for the stripes of more regular regions in

(a) 1.0
0.8
0.6
€n
0.4
0.2
0.0
(b)
0.8
0.6
€p

0.4

0.2

0.0
0 1 2 3 4 5 6 7 &

Fig. 12. (a) Long-term behavior depending on I" and ¢ for
f = 10Hz, ¢g = —0.25, Wy = 0. Black: regular solutions, red:
sticking solutions, green: chaotic solutions. (b) Regions where
the coefficient of restitution € becomes velocity dependent.

« | =

€9

(b)

€0

Fig. 13. (a) Long-term behavior depending on I' and ¢y for
f =20Hz, g = —0.25, Wy = 0. Black: regular solutions, red:
sticking solutions, green: chaotic solutions. (b) Regions where
the coefficient of restitution € becomes velocity dependent.

the bifurcation diagram, Fig. 4(b), which do also
exist for other values of € at the same positions.

In Figs. 12(b) and 13(b) we have indicated
the regions in parameter space where the velocity
dependence of € actually becomes effective. Here,
the orbits around I' &~ 4.60 and I" =~ 7.79, where
the ball gets caught tangentially or almost tan-
gentially, can clearly be discerned again. For high
and medium range dissipation the transition from
constant to velocity dependent behavior close to
I' = 1.5 for f = 20Hz, respectively I' = 1.7 for
f =20 Hz, does not depend on €. This effect stems
from sticking solutions, where the ball lifts off and is
caught in the same cycle of the table’s oscillations.
In such a case the impact speed has its highest value
at the first impact after lift-off and depends solely
on the driving of the table.

4.4. Global behavior for scanned
initial conditions

As in the case of the velocity independent coefficient
of restitution a complete picture of possible scenar-
ios can be obtained by scanning parameters and ini-
tial conditions. We present the results for f = 20 Hz
in Fig. 14. To limit computational time only 20 000
impacts, of which the first 3000 were discarded,
are taken into account. In contrast to Figs. 12(b)
and 13(b), in Fig. 14(d) only orbits are indicated
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Fig. 14. Possible types of solutions for f = 20Hz.
Initial conditions scanned 10 x 10. (a) Periodic solutions.
(b) Chaotic solutions. (c) Sticking solutions. (d) Regions
where the coefficient of restitution e becomes velocity
dependent.

where the coefficient of restitution becomes veloc-
ity dependent after the first 3000 iterations have
passed, because due to the scanning process every-
where orbits exist for which the impact velocity at
the very first impacts is high. As a consequence,
white areas in the figure indicate either that for all
orbits (with the same I" and €, but different initial
conditions) calculations were interrupted, because
|w'| exceeded 1.0 m/s, or that the coefficient of resti-
tution is constant for all surviving orbits. Colored
areas indicate that e is velocity dependent for at
least one of the scanned orbits beyond the first 3000
impacts.
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From Fig. 14 it can be seen that the size of
regions with stable chaotic and periodic solutions
grows. For small frequencies this effect is more pro-
nounced, as we could see from equivalent graphs for
f=10Hz.

Generally speaking, deviations are grave, which
brings us to the conclusion that the velocity depen-
dence of the coefficient of restitution cannot be
neglected in more realistic models. Qualitatively
speaking, this result remains valid, if instead air
friction is taken into account, as has been shown
by Naylor et al. [2002].

5. Jump Heights

The bouncing ball system has also attracted
increasing attention as a starting point for under-
standing the more complicated problem of parti-
cle transport on vibrating conveyor belts, where
particles are subject to a combined horizontal
and vertical oscillation [Rademacher & ter Borg,
1994; Sloot & Kruyt, 1996; Landwehr et al., 1997;
El hor & Linz, 2005]. An important characteristic
in such technical applications is the transport veloc-
ity of the particles. Since this property cannot be
determined directly in the bouncing ball system,
we examined the property of a similar but acces-
sible quantity, namely the average jump height of
the ball. In Fig. 15 the results for the same orbits
as in the bifurcation diagrams 3(a), 10(a), and 11(a)
are presented.

We made use of three different methods to cal-
culate the jump heights. First, the maximum height
of the ball between impacts was consecutively deter-
mined. The black lines in Fig. 15 show the aver-
aged value and thus provide information about the
absolute average jump height. If each time the posi-
tion of the table is subtracted from the maximum
height of the ball, one determines the average height
of the ball relative to the table (the blue lines in
Fig. 15). In both of the above cases only jumps were
taken into account, where a real maximum of the
parabolic trajectory of the ball occurred, in order
to avoid the problem of convergence for sticking
solutions (where an infinite number of smaller and
smaller jumps occurs). Such maximum heights of
the ball might be easier to measure in experiments.
However, if small jumps without real maxima occur,
these will be missed.

The most detailed information is provided by
the red line in Fig. 15. To obtain it, the continu-
ous time-average of the height of the ball above the
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Fig. 15. Average normalized jump height X for ¢g = 0.94.
Black: absolute height, blue: relative height, red: time aver-
age. (a) Constant € as in Fig. 3. (b) f = 10Hz as in Fig. 10.
(¢) f =20Hz as in Fig. 11.

table was calculated (the area between the trajec-
tories of the ball and the table in a t — X diagram
divided by the time elapsed). As can be seen from
the figure, all three methods qualitatively yield the
same results.

Generally, it can be said that jump heights vary
rather slowly, as long as the ball is moving on the
same type of attractor. This even holds true when
an attractor bifurcates, as e.g. the period one orbit
at I' ~ 1.0 in Fig. 3(a), and when a transition from
periodic to chaotic behavior takes place (as can be
seen in other parameter regimes which we do not
show here). In this sense jump heights are therefore
less sensitive than Lyapunov exponents.

Finally, it is not obvious for which types of solu-
tion the jump heights are higher. All upward and
downward peaks in Fig. 15 belong to periodic or
chaotic solutions. Jump heights for sticking solu-
tions fluctuate, too, but around a base line, which
shows a nonmonotonous behavior. Steep downward
peaks can be found at the strictly periodic regions

given by 0 = arcsin(1/T) + vI?2 -1 — w(n + 1/2)
(cf. Sec. 4.4). These are not visible in Fig. 15.

As can be expected, for velocity dependent e
deviations are more pronounced in dimensionless
units for small frequencies.

6. Conclusion

In this paper, we have studied in considerable detail
two models for the bouncing ball system. We have
started out by reviewing the standard theoretical
model which neglects a number of physical effects.
Such effects can be expected to be of significance in
experiments. As a first important result, the hith-
erto contentious question of the existence of chaos
in the bouncing ball system could be answered
in a positive way. We found out that Lyapunov
exponents alone are not sufficient to distinguish
between chaotic and sticking solutions because of
the existence of so-called self-reanimating chaos.
However, attractors with positive Lyapunov expo-
nents do exist which are confined to restricted parts
of phase space that do not overlap with the lock-
ing regions. Orbits that lie on such attractors are
therefore chaotic and in this case the ball will not
stick to the table. A detailed investigation of the
long-term behavior depending on parameters and
initial conditions has shown that on the whole such
chaotic solutions play a rather subordinate role. In
the larger part of parameter space sticking solutions
prevail, especially for small energy dissipation and
high accelerations.

To make the model more realistic, the velocity
dependence of the coefficient of restitution has been
included in the theoretical description. In conse-
quence, the same types of solutions as before can be
found, namely periodic, chaotic and sticking solu-
tions. However, significant changes take place that
affect single orbits and alter the overall picture dras-
tically. Generally speaking, the region of stability of
chaotic and periodic solutions in parameter space
grows. In addition, average jump heights of the ball
have been examined. These can depend very sensi-
tively on small variations of parameters.

Finally, for future work it is of primary impor-
tance to model the velocity dependence of the coef-
ficient of restitution more accurately for high and
medium range dissipations. As a next step, it would
be instructive to include the influence of other
effects such as air friction, rotational degrees of free-
dom, rough table surfaces, and so on. Other ques-
tions, for example, the remarkable fluctuations of
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the average jump height, deserve to be investigated
in more detail in future studies.
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