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Abstract. Non-integrability criteria, based on differential Galois theory and
requiring the use of higher order variational equations (VEk), are applied to
prove the non-integrability of the Swinging Atwood’s Machine for values of
the parameter which can not be decided using first order variational equations
(VE1).

1. Introduction and statement of results. The Swinging Atwood’s Machine
(SAM for short) is a two-degrees-of-freedom Hamiltonian system derived from the
well-known simple Atwood’s machine. We refer to [13] and references therein for a
derivation of the equations, even in the case that the effect of pulleys is considered.
Historical and experimental results can be found in the same reference.

The Hamiltonian of the system is

H =
1

2

(

p2r
1 + µ

+
p2θ
r2

)

+ r(µ− cos θ), (1)

where µ is a mass ratio, µ > 1 in the domain of interest. Other physical parameters
have been normalised by taking suitable units.

We are interested on the integrability or non-integrability of (1). In general, we
can consider a Hamiltonian system

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
,

where H is assumed to be real analytic on some domain Ω of R2n. We consider the

extension to a complex domain Ω̂ of C2n.
If x = {q, p} ∈ C

2n we consider solutions x(t) with t ∈ D̂ ⊂ C. The image of D̂
by x is a Riemann surface R.
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We shall consider integrability in the Liouville-Arnol’d sense:

Definition 1. A Hamiltonian system is integrable if and only if there exist n first
integrals f1, f2, . . . , fn independent almost everywhere and in involution. Usually
it is taken f1 = H. In general the functions f1, f2, . . . , fn will be considered mero-
morphic in a neighbourhood of a given solution x(t).

The standing problem is to find necessary conditions for integrability, or, equiv-
alently, sufficient conditions for non-integrability.

Integrable Hamiltonian systems have, in some sense, well ordered dynamics, while
non-integrable ones are associated to some amount of chaos. It may be the case
that chaotic dynamics appears only in the non-real part of the complex phase space
without showing up in the real one (see, e.g. [11]). A chaotic behaviour implies lack
of predictability, i.e., a sensitive dependence to initial conditions.

Several criteria follow from the so-called Morales-Ramis theory, which includes
classical results by Ziglin [16]. The results summarized here are contained in [8, 9].
See also [7] for all the necessary background and technical details.

Consider the m-dimensional ODE ẋ = f(x) and let x(t) be a solution. The
first variational equations (VE1) along x(t) are given by d

dtA = Df(x(t))A and we
consider the initial condition A(t0) = Id, where x0 = x(t0) is a regular point of f
and Df . If we take closed paths on the Riemann surface R with base point x0,
one can associate to each path the corresponding monodromy matrix, that is the
matrix A at the end of the path. The set of all these matrices form the monodromy
group.

More generally, we can consider any linear ODE

d

dt
A(t) = B(t)A(t). (2)

We assume that the entries of B belong to some field of functions K. Let ξi,j be the
elements of a fundamental matrix of (2) and L be the extensionK(ξ1,1,ξ1,2, ...,ξm,m),
which is trivially a differential field. Consider the Galois group G =Gal(L | K),
that is the group of automorphisms of L leaving the basic field K invariant. It is
an algebraic group. Then the following result is obtained.

Theorem 1. (Morales-Ramis) Under the assumptions above if a Hamiltonian is
integrable in a neighbourhood of R then the identity component G0 of the Galois
group of the first order variational equations VE1 along R is commutative.

The identity component is taken using the Zariski topology. We also recall that
if the singular points of (2) are of singular regular type, then the Galois group
coincides with the Zariski closure of the monodromy group (a result sometimes
called Schlesinger’s theorem [14], and which is a special case of the Ramis density
theorem [4]). This happens in present case, the first variational equations (11) being
a simple case of hypergeometric equation.

A delicate example of application of Theorem 1 can be seen in [12]. See also [10]
for a long, but not exhaustive, list of examples where this theorem has been used
to detect non-integrability.

Concerning SAM problem the following result was proved in [3] using Ziglin’s
theory

Theorem 2. The Hamiltonian system defined by (1) is non-integrable if µ 6= µp

where µp = 1 +
4

p2 + p− 4
, p ∈ N, p ≥ 2.
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Furthermore the case p = 2, µp = 3 is known to be integrable [15].
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Figure 1. Poincaré sections of (1) through θ ≡ 0 (mod 2π), pθ > 0
on the energy level H = 1/(2(1 + µ)). Due to the symmetry only
the upper part is shown in (r, pr). From left to right and top to
bottom µ = µp for p = 2, 3, 4, 5, 6, 62 are shown.

In the “degenerate” cases µ = µp, p > 2 the variational equations VE1 give
nothing against integrability using as solution x(t) the very simple solution (5). We
shall argue in what follows why it is quite natural to take this solution to try to
prove non-integrability.

Note that the value of µp tends to 1 as p → ∞. On the other hand, for these
exceptional cases a Poincaré section reveals that the system is far from integrable
(see Figure 1). For µ2 = 3 the integrable structure is clearly seen. Other values,
like µ3 = 3/2, µ4 = 5/4, µ5 = 15/13, µ6 = 21/19, display large chaotic zones.
However, when µp is close to 1, as happens for p large, the only hint on non-
integrability comes from the presence of tiny chains of islands. For instance, for
p = 62, µp = 1953/1951 additional explorations, see Figure 2, show the existence of
chains of islands of periods 31, 32 and 62 very close to the boundary of the domain
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(compared to the size of the domain). In all cases one has taken a level of energy
H = 1/(2(1+µ)) so that an orbit on the invariant plane θ = pθ = 0 passing through
(r, pr) = (0, 1) is at the boundary of the domain of definition of the Poincaré map.
This will be the solution x(t) used to prove the non-integrability. The dynamic idea
beyond this choice is the numerical evidence that for large p the observed chaotic
behavior in the Poincaré section is close to that boundary.

To produce the plots in Figure 1 one has taken a few initial points on a grid in
(r, pr) and 1000 Poincaré iterates have been computed from each one of them.
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Figure 2. Magnification of a small domain of Figure 1, using more
initial points, to show the existence of islands of periods 31,32 and
62.

The fact that G0 is commutative for µ = µp, p > 2 when x(t) is taken as given
by (5) and, hence, there is nothing against integrability, suggests to try to detect
non-integrability at higher order. The theoretical support is given as follows (see
[5]).

Let ϕ(t, x0) be the solution of ẋ = f(x(t)) with ϕ(t0, x0) = x0. We consider as
fundamental solutions of the k-th order variational equations, VEk, based on x0,
the string of maps (ϕ(1)(t), ϕ(2)(t), . . . , ϕ(k)(t)) such that

ϕ(t, y0) = ϕ(t, x0) + ϕ(1)(t)(y0 − x0) + . . .+ ϕ(k)(t)(y0 − x0)
k + . . . ,

for every y0 sufficiently close to x0. Obviously ϕ(1)(t) is a solution of the first order
VE=VE1 with the initial condition ϕ(1)(t0) = Id. If we write y0 = x0 + ξ then the
Taylor expansion of ϕ(t, x0 + ξ) has ϕ(k)(t)(ξ)k as homogeneous part of order k,
that is the above string of maps contain all the entries of the k-jet.

The ϕ(k)(t) satisfy linear non-homogeneous ODE, the non-homogeneous part de-
pending in a nonlinear way of the entries of the previous maps ϕ(1)(t), . . . , ϕ(k−1)(t).
If we consider simultaneously the differential equations for ϕ(1)(t) to ϕ(k)(t) the sys-
tem is nonlinear but, for any k, the equations for the entries of the ϕ(j), j = 1, . . . , k
can be made linear by introducing additional variables (products of entries) which
also satisfy linear ODE (see [10] for details). The initial conditions are

ϕ(1) = Id, ϕ(k)(t0) = 0 for k > 1. (3)

See [10] for explicit versions in terms of the entries of the maps ϕ(k)(t). For
further use we introduce the notation xi, xi;k, xi;k1,k2 , xi;k1,k2,k3 , . . . for the en-
tries of x and the first, second, third, . . . derivatives with respect to the ini-
tial conditions. Divided by the corresponding factorial they give the entries of
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ϕ(t), ϕ(1)(t), ϕ(2)(t), ϕ(3)(t), . . . . For instance x4;1,3,3 = ∂3(ϕ)4
∂x1∂x2

3

. Note that once ϕ(1)

is available, all the entries of ϕ(k), k = 2, 3, . . . are obtained by quadratures.
Hence, one can introduce the k-th order Galois group Gk as the Galois group

associated to the linearized version of the variational equations up to order k. We
can also introduce the k-th order monodromy as the monodromy obtained with
the linearized version of the VEk. The information it gives is equivalent to the
information obtained by transporting the jet up to order k. That is, starting at the
point x0 + ξ at time t0 one has

ϕ(t; t0, x0 + ξ) =
∑

0≤|j|≤k

aj(t)ξ
j +O(|ξ|k+1),

where j is a multiindex and the aj coefficients are m-dimensional vectors if x is
m-dimensional. If later we are interested in ϕ(s; t0, x0 + ξ) when we move from t to
s along a given path (note that one can have s = t) we have to “transport the jet”
from t to s, which justifies naming this as jet transport.

The jet
∑

0≤|j|≤k aj(t1)ξ
j when we return to x0 moving along a closed path γ from

t0 to t1 with γ(t0) = γ(t1) = x0, can be seen as the k-th order monodromy along γ
with base point x0, to be denoted as Mγ

k . In our present problem, however, all the
paths that we shall consider have the same value for t0 and t1. The composition
of jets like Mγ

k using different paths γ forms a group, to be denoted simply as Mk,
which is a natural extension of the monodromy group M1.

Then, for any k ≥ 1 the following extension of Theorem 1 holds:

Theorem 3. ([10]) Under the assumptions above if the Hamiltonian is integrable
in a neighbourhood of R then for any k ≥ 1 the identity component (Gk)

0 of Gk is
commutative.

This result gives rise to non-integrability criteria to all orders. Note that these
criteria can depend strongly on the reference solution x(t) and on the paths γ used
to transport the jet. In general it is not true that if these necessary criteria are
satisfied for all k ∈ N the system is integrable. The problem of finding sufficient
conditions for integrability remains open.

The main purpose of that paper is to use Theorem 3 to prove

Theorem 4. The degenerated cases µ = µp, p > 2 of the SAM are non-integrable.

The result will follow from the non-commutativity of (G3)
0 that it is proved using

suitable paths along a solution on the invariant plane θ = pθ = 0.

As explained in [5] the first step will be to take two closed paths, that in present
case are denoted as γ+ and γ−, such that the monodromies M

γ±
1 are in (G1)

0. As
it will be seen in the proof of Theorem 4 the VE1 on the plane θ = pθ = 0 decouple
in the (r, pr) and the (θ, pθ) variables. As the subproblem in (r, pr) variables is
integrable one should only take care of VE1 in the (θ, pθ) variables. The fact that
the M

γ+
1 and M

γ−
1 are in (G1)

0 follows immediately from the unipotent character
of these matrices. Then one has also that M

γ+
k and M

γ−
k are in (Gk)

0 (eventually
one has to replace the Riemann surface R by a “subsurface” R′) and the lack of
commutativity for k = 3 is enough to prove Theorem 4. See Lemma 2 in [5] for
additional details.

We can interpret that result in terms of jet transport. After transporting along
Γ = γ−1

− ◦ γ−1
+ ◦ γ− ◦ γ+ the initial variations ξ we recover, ξ at first order, zero at
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second order and something different from zero at third order. In fact, we do not
claim that the second order terms are zero, despite we have a strong evidence by
explicit symbolic computation for low values of p (up to several thousands). But
there are definitely, third order terms different from zero.

Additional examples on the use of higher order variational equations to detect
non-integrability and a methodology to deal with these problems can be found in [5].

A big effort has been undertaken to compute the monodromy for many linear
differential equations, but the authors are not aware of a similar effort concerning
higher order monodromy, i.e., the study of the transport of jets of arbitrary order.

In general no explicit solution is known for an arbitrary Hamiltonian. But assume

we are able to find, numerically, two paths ψ1, ψ2, such that M
ψj

1 are in (G1)
0, and

we can compute M
ψj

k , j = 1, 2 along them. Then

[Mψ1

k ,Mψ2

k ] = (Mψ2

k )−1 ◦ (Mψ1

k )−1 ◦Mψ2

k ◦Mψ1

k , (4)

should be trivial, that is, equal to the identity to order k if the system is integrable.
If it does not hold and we can rigorously prove that this is still true when we account
for the numerical errors, then non-integrability is proved.

Furthermore the present case involves in an essential way two different singular-
ities. This means that it requires some global information in contrast with other
problems in which the lack of integrability can be detected by local computations.
See, e.g., the degenerate Hénon-Heiles system used in [10] as simple example.
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Figure 3. Norms g(k): The lower (resp. upper) curve corresponds
to k = 1 (resp. k = 3). As µp accumulate to 1 like 1 + O(p−2)
the horizontal axis displays log(µ − 1) while in the vertical one
argsinh(g(k)) is shown.

A systematic approach to check numerically for non-integrability in an efficient
way, based on Theorem 3, illustrations concerning the SAM and a variety of ad-
ditional examples can be found in [6]. This numerical information has been very
useful to suggest the approach to be taken for the proof of Theorem 4. As an il-
lustration Figure 3 displays the values of the norms g(k) of the terms of order k of
the jet after the transport along Γ for k = 1, 2, 3 as a function of µ. As norm we
have taken g(k) =

∑

|j|=k |(aj)f | where (aj)
f denotes the value of aj(t) at the end

of the full path. For the order k = 1 one has subtracted the identity from ϕ(1). The
concrete path used for the computations will be shown in Figure 4.
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The places where g(1) and g(2) can be considered equal to zero correspond, from
right to left, to p = 2 (µ = 3), p = 3 (µ = 3/2), . . . , p = 8 (µ = 18/17). For p = 2
also g(3) is seen, numerically, equal to zero, in agreement with the theoretical fact
that the case p = 2 is integrable. For all other values of µ one already has numerical
evidence that g(1) 6= 0. A simple estimate of errors in the values that are suspected
to be zero at the end of the path is obtained as follows: the modulus of the coefficient
after integrating the ODE along Γ is divided by the maximum value reached during
the integration. Concretely, if we denote as a∗(t) one of these coefficients, we
compute |(a∗)f |/maxt∈Γ |a∗(t)|. This estimate is reasonable because of the possible
cancellations if maxt∈Γ |a∗(t)| is large. In all cases if computations are done with d
binary digits that quotient is below 100× 2−d. Typical ODE integrations are done
with Taylor method of order 26 and local truncation error 10−20 when working in
double precision and with order 45 and local truncation error 10−35 when quadruple
precision is used.

2. Sketch of the proof of Theorem 4 and first steps. Guided by numerical
results (see [6]) we confine our theoretical study to third order variational equations.
It will be proved that this is enough to detect non-integrability.

We shall use the following notation. If γ, ψ are two closed paths on a Riemann
surface R then ψ ◦ γ will denote the path obtained by following first γ and then
ψ. Similar for a larger number of paths. A path traveled in reversed direction will
be denoted as γ−1. Furthermore we shall also use the same notation, say γ, for a
closed path on a Riemann surface R lying on the (complex) phase space and for

the corresponding temporal arc in the domain of definition D̂ of x(t). The meaning
will be clear from the context.

The proof proceeds in several steps:

• Selection of a simple, regular, solution to (1) such that the variational equa-
tions along it have two singularities.

• Second step is the selection of a suitable path Γ, which is obtained from
the composition of simple paths γ+ and γ− around the singularities. More
concretely, we shall take Γ = γ−1

− ◦ γ−1
+ ◦ γ− ◦ γ+. Then the commutator

(M
γ−
k )−1 ◦ (Mγ+

k )−1 ◦Mγ−
k ◦Mγ+

k , of the form (4), is simply represented as
MΓ
k .
This is a key point because other choices can lead to more involved com-

putations.
One checks that M

γ+
1 and M

γ−
1 are in (G1)

0. From this it follows that
M

γ+
k and M

γ−
k are in (Gk)

0 for a suitable Riemann surface, see [5].
• The solutions of the variational equations for the different orders (equivalent
to the coefficients of the jet) satisfy symmetry relations as a function of t and
some of them are identically zero. The transport of the third order jet along Γ,
MΓ

3 , can be expressed from the coefficients of the transport of the jet along γ+
and several additional integrals. For the computation of integrals along paths
in complex time one has to take into account that, if the paths start, say, at
t = 0 they can return to the same value of t with a different determination of
the function to be integrated. This is examined in detail.

• At that point we claim that some of the coefficients in M
γ+
3 are zero and

some are different from zero. Then a part of MΓ
3 can be computed and this

is enough to prove Theorem 4.
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Let us write the Hamiltonian vector field for (1) in the form ẋ = f(x) and let
(x1, x2, x3, x4) = (r, θ, pr, pθ) and fi, i = 1, . . . , 4 be the entries of f .

A simple, regular, solution to (1) on the invariant plane x2 = x4 = 0, is given by

x1(t)=r(t)=
1

a

(

1−t2
)

, x2(t)=θ(t)=0, x3(t)=pr(t)=(1−µ)t, x4(t)=pθ(t)=0,

(5)
where a = p2 + p − 2 and from now on we shall use simply µ instead of µp, but
keeping in mind that only the values corresponding to integer p are considered.
Note that r(±1) = 0. The solution (5) is somewhat arbitrary, because the initial
value of the radius x1(0), assuming x3(0) = 0, can be any positive number. This
depends on the level of energy in which the solution is considered. Using (5) the
level of energy is 4

(p2+p−2)(p2+p−4) which is different from the value used in Figures

1 and 2. But if we scale x1(0) by ν
2 then r(±ν) = 0 and the level of energy changes.

The derivatives of variable i of orders (j1, j2, j3, j4) with respect to (x1, x2, x3, x4)
scale like νn(i)−2j1−j3−3j4 , where n(1) = 2, n(2) = 0, n(3) = 1, n(4) = 3. Hence,
scaling keeps the commutativity properties of Mk. The effect of the scaling will be
seen also in [6], where it is used to enhance or decrease the numerical difficulties, by
decreasing or increasing, respectively, the distance of the path to the singularities.

The solutions of the first variational equations associated to the variables (x1, x3)
are also elementary

(

x1;1(t) x1;3(t)
x3;1(t) x3;3(t)

)

=

(

1 t/(1 + µ)
0 1

)

. (6)

On the other hand, the first variational equations associated to the (x2, x4) variables
are

d

dt

(

x2;2(t) x2;4(t)
x4;2(t) x4;4(t)

)

=

(

0 r−2(t)
−r(t) 0

)(

x2;2(t) x2;4(t)
x4;2(t) x4;4(t)

)

. (7)

All the other entries of the VE1 are identically zero.

Typically we shall use a notation like xi;k1 (t), xi;k1,k2(t), . . . to denote the func-
tions as depending on t, while xi;k1 , xi;k1,k2 , . . . will denote the values at the end of
a path which will be clear from the context.

While (5) is not introducing any singularity, (7) does at r = 0. Note that the
solution through r = 0 is non-physical. But this is irrelevant for the proof on the
non-integrability.

This fact suggests to take the following paths: Let γ+ (resp. γ−) be a closed
path starting, in the temporal domain, at t = 0 and going around t+ = 1 (resp.
t− = −1) clockwise. It is convenient to take each of the paths symmetrical with
respect to the real axis. The full path will be Γ = γ−1

− ◦γ−1
+ ◦γ− ◦γ+, as mentioned.

The initial conditions are taken from (5) with t = 0. The symmetries associated to
the four paths involved in Γ will play a relevant role, but other parts of the proof
require an explicit knowledge of the transport of the jet to third order along γ+.

Figure 4 sketches a possible model for the paths γ± and the complete path Γ.

It is clear that there is freedom in the definition of the basic paths γ+ and γ−. One
could take one of them clockwise and the other counterclockwise. But with present
definition we have that γ− is obtained by changing the sign of γ+. Furthermore the
path γ−1

− ◦γ−1
+ is the complex conjugate of γ− ◦γ+. As a consequence it will be seen

that one can recover all the necessary information from the transport along γ+.
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Figure 4. Sketch of the path to be used as model for Γ. In the
time domain Γ is OABCDAOEFGHEOADCBAOEHGFEO. The
paths γ+, γ− or OABCDAO, OEFGHEO, are traveled clockwise.
Note that each path is symmetrical with respect to the real axis.

For the proof of Theorem 4 we shall show that VE1 gives the identity along Γ,
then VE2 is zero (with one eventual exception, see Remark 1) and some of the
elements in VE3 are different from zero.

Using the solution (5) one can compute the coefficients of the variational equa-
tions which are different from zero along it:

f1;3 = (1 + µ)−1, f2;4 = x−2
1 , f4;2 = −x1,

f2;1,4 = −2x−3
1 , f3;2,2 = −1, f3;4,4 = 2x−3

1 , f4;1,2 = −1,
f2;1,1,4 = 6x−4

1 , f3;1,4,4 = −6x−4
1 , f4;2,2,2 = x1,

(8)

where fi,k1 , fi,k1,k2 , fi,k1,k2,k3 denote derivatives of fi in the obvious way and we
have not written the symmetric terms. All the functions in (8) are even in t.

Next two lemmas follow easily from inspection of the equations, their symmetries
(locally, around t = 0), the variational equations, the form of the coefficients (8)
and the initial conditions (3).

Lemma 1. The parity of an element xi(t), xi;k1 (t), xi;k1,k2(t), xi;k1,k2,k3(t), . . ., if
it is not identically zero, is the same as the parity of

P = #{i, k1, . . . , ks ∈ {3, 4}},
where s denotes the order of the variationals. This fact holds for all order s.

Lemma 2. The elements of the form xi;k1,k2(t), xi;k1,k2,k3(t), . . . which are not iden-
tically zero satisfy the following condition: The cardinality of the set {kj ∈ {2, 4}}
must be non-zero and to have parity different from the parity of i. This fact holds
for all order s.

As mentioned the rule applies also to higher order derivatives. This gives, for
instance, that from the total of 140 elements in the jets to order 3 of the four
image variables (including order 0), only 55 are not identically zero. For large
order, simple combinatorial computations show that the fractions of identically
zero and non-identically zero elements tend to be the same. All this holds also for
p ∈ R, p > pm = (

√
17− 1)/2, that is, for all values of p such that µp > 0.
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Before dealing with statements about some coefficients being zero or non-zero
at the end of γ+ we should discuss the effect of the parity of p. The following
proposition will be proved in Section 3.

Proposition 1. Let Φ2(t) be the solution of (7) which is the identity at t = 0, that
is, the fundamental solution. Then at the end of the path γ+ it has the form

(

1 x2;4
0 1

)

for p odd and

(

1 0
x4;2 1

)

for p even,

where the respective coefficients x2;4, x4;2 are non-zero and purely imaginary. M
γ+
1 ,

M
γ−
1 belong to (G1)

0. Moreover, at the end of γ− ◦ γ+, Φ2 becomes the identity.

From now on, we shall concentrate on the case p odd, the proofs being the
same for the case p even, taking into account that symmetry.

After Lemma 1, the only second order variables not identically zero are the
following ones

xi;2,2(t), xi;2,4(t), xi;4,4(t), i = 1, 3, (9)

xj;1,2(t), xj;1,4(t), xj;2,3(t), xj;3,4(t), j = 2, 4. (10)

Proposition 2. Assume p is odd. The following coefficients are zero after going
along Γ:

xi;2,2, xi;2,4, for i = 1, 3, xj;1,2, xj;1,4, xj;2,3, for j = 2, 4, and also x3;4,4, x4;3,4.

The proof of Proposition 2 will be given in Section 4.

Remark 1. Lemma 2 and Proposition 2 prove that all the elements of the second
order variationals along Γ are zero, except x1;4,4 and x2;3,4. If some of these elements
is different from zero Theorem 4 would be proved. However, there is a strong
numerical evidence that they are also zero at the end of Γ (see the end of Section
1 and [6]). The proof of that is rather cumbersome as a look at the equations in
(17), the expression of the function D4(t) which involves the squares of x2;4(t) and
d
dtx2;4(t), a function given in (13), allows to check. So we prefer to concentrate
on suitable third order variationals whose analytical computation is easier and is
independent of the fact that x1;4,4 and x2;3,4 are zero or non-zero. One should
also mention that some of the relations in Proposition 2 follow from the symplectic
character of the jet transport.

Remark 2. An alternative and essentially equivalent approach for the proof of
Theorem 4 can be the computation of the transport of the jet to order 3 (or of a
sufficient part of it) along γ+, γ−, γ

−1
+ and γ−1

− by using the symmetries which relate
the jet transported along γ+ to the other ones. Then the transport of the jet along
Γ is obtained by composition.

Next proposition ends the proof of Theorem 4.

Proposition 3. Assume p is odd. After the transport along Γ the coefficients
x2;2,2,4 and x4;2,4,4 are real and non-zero.

The proof of Proposition 3 will be given in Section 4.

Remark 3. Numerical evidence that several other coefficients of the third order
jet are zero at the end of γ+ is reported in [6]. In fact, the only coefficients which
are not zero after the transport along Γ, beyond the identity at order 1, seem to
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be x2;2,2,4 = −x4;2,4,4 and x2;4,4,4 in the case p odd and, symmetrically, x4;2,2,2 and
x2;2,2,4 = −x4;2,4,4 in the case p even, except in the integrable case p = 2. But none
of these evidences will be used in the proof.

3. Study of first order variational equations. The first thing we need is the
solution of (7). Let us write as (ξ, η) the entries of a column of the solution to (7).

The system ξ̇(t) = r−2(t)η(t), η̇(t) = −r(t)ξ(t) becomes

(1 − t2)ξ̈(t)− 4tξ̇(t) + aξ(t) = 0, (11)

recalling a = p2 + p − 2. The singularities at t = ±1 are clear from (11). From

a solution ξ(t) we obtain η(t) = r2(t)ξ̇(t). Equation (11) is a special case of the
hypergeometric equation with integer parameters.

We look for two fundamental solutions of (11) ξ1(t), ξ2(t). Except by scaling
factors, to have the identity matrix at t = 0, they can be selected as follows:

• ξ1(t) is a polynomial of degree p− 1, even if p is odd and odd if p is even. It
is normalized in such a way that ξ1(1) = 1. Then using (11) it satisfies that

ξ̇(1) = a/4. Except by a scaling factor it coincides with the Jacobi polynomial

P
(1,1)
p−1 (t) (see, e.g. [1]), that is, it is proportional to

1

1− t2
dp−1

dtp−1

(

(1 − t2)p
)

.

With this normalization the expansion around t = 0 is of the form

(−1)(p−1)/2

2p−1

(

p− 1
(p− 1)/2

)

2

p+ 1
+O(t2) for p odd,

(−1)(p−2)/2

2p−1

(

p
p/2

)

t+O(t3) for p even.

(12)

Using Stirling’s formula (and taking into account the error!) the absolute value

of the leading coefficients can be bounded from above by
√

8
(p−1)π/(p+1) and

√

8
pπ , respectively.

• ξ2(t) contains singularities and it is of the form

ξ2(t) =

[

−1

2
(a+ 2) (log(1 + t)− log(1 − t)) ξ1(t) + ψ(t)

]

+ g(t), (13)

where ψ(t) = − 2s(t)

1− t2
, being s(t) = 1 for p even, s(t) = t for p odd. Further-

more g(t) is the unique polynomial solution of degree p− 2 of the equation

(1 − t2)
d2g

dt2
(t)− 4t

dg

dt
(t) + ag(t) = (2a+ 4)

(

dξ1(t)

dt
− tξ1(t)− s(t)

1− t2

)

. (14)

In fact, it is immediate to check that ξ2(t) is a solution of (7) if and only if,
g(t) is a solution of (14). Using the normalization ξ1(1) = 1 and the parity
of ξ1(t) one has that tξ1(t) − s(t) = (1 − t2)Q(t) for some polynomial Q(t)
of degree p − 2 which has the same parity as p. Then, a unique polynomial
solution of (14) can be determined.

• A fundamental matrix is obtained by taking
(

ξ1(t) ξ2(t)
η1(t) η2(t)

)

if p odd,

(

ξ2(t) ξ1(t)
η2(t) η1(t)

)

if p even. (15)

We note that due to the normalization used for ξ1, as shown in (12), the
matrices above become diagonal at t = 0. Therefore to pass from (15) to the
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usual normalization for the fundamental matrix, that is, the identity at t = 0,
one has to multiply (15) by some constant diagonal matrix, C, different for
p odd and p even (this is irrelevant for the proofs, but affects the numerical
computations as shown in [6]). In particular, if p is odd we obtain

(

x2;2(t) x2;4(t)
x4;2(t) x4;4(t)

)

=

(

c1 ξ1(t) c2 ξ2(t)
c1 η1(t) c2 η2(t)

)

(16)

for some constants c1, c2.

Proof of Proposition 1. Assume p is odd. One has to check that at the end of
γ+, x2;4 is non-zero and purely imaginary. According to (13) if we start at t = 0,
when returning to it after the loop γ+ the only changes are due to the determination
of log(1 − t), which changes by −2π i. Hence, the value of x2;4 at the end of γ+
is, except by normalizing factors, equal to − 1

2 (a + 2) × (2π i) × ξ1(0) which is 6= 0
according to (12). In a similar way after the loop γ− the change is due to the
determination of log(1 + t) which cancels the one introduced by log(1 − t). So, we
get the identity for Φ2 after traveling along γ− ◦γ+. Furthermore, starting at t = 0,
both M

γ+
1 and M

γ−
1 are unipotent. Hence, they are in (G1)

0 (see [7], Proposition
2.2). In the case p even, the proof follows similar steps. �

4. Study of second and third order variational equations. The variables in
(9) satisfy the following equations

ẋ1;2,2 = 1
1+µx3;2,2, ẋ1;2,4 = 1

1+µx3;2,4, ẋ1;4,4 = 1
1+µx3;4,4,

ẋ3;2,2 = −D2, ẋ3;2,4 = −DM , ẋ3;4,4 = −D4,

(17)

where

D2(t) := x22;2(t)− 2r(t)ẋ22;2(t), D4(t) := x22;4(t)− 2r(t)ẋ22;4(t),

DM (t) := x2;2(t)x2;4(t)− 2r(t)ẋ2;2(t)ẋ2;4(t).

In a similar way, the variables in (10) involve the functions D2(t),D4(t) and DM (t).
The equations are given in appendix 1.

The proof of Propositions 2 and 3 require the computation of some integrals along
the path γ− ◦ γ+. In what follows, given a function f and a concrete determination
f(0) at t = 0, we shall denote by f+(z) the values it takes along γ+ or along γ− when
it changes in a continuous way from t = 0, and by f−(z) the values it takes along
γ− after traveling along γ+ and returning to t = 0, taking into account possible

changes in the determination. Assume that f−(z) = f+(z) + f̂(z) for some f̂(z).

Then
∫

γ−◦γ+
f(z)dz is equal to −

∫

γ+
f̂(−z)dz if f+(z) is an even function (locally,

around t = 0), and it is equal to 2
∫

γ+
f+(z)dz −

∫

γ+
f̂(−z)dz if f+(z) is odd.

Proof of Proposition 2. It is clear that D2(t) involves only the functions r(t),

ξ1(t), ξ̇1(t). So, it is a polynomial. Moreover we recall that x1;3(t) = t/(1 + µ).
Then

∫

γ

D2(t)dt = 0,

∫

γ

x1;3(t)D2(t)dt = 0

along any closed path γ. Therefore at the end of Γ we have xi;2,2 = 0 for i = 1, 3.
In a similar way x4;1,2 = 0 and x4;2,3 = 0 (see appendix 1).
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Let us consider DM (t). First we shall prove that
∫

γ+

DM (t)dt = 0.

Using the normalization ξ1(1) = 1 and ξ̇(1) = a/4 a simple computation shows that
(see (13), (15) and (16))

DM (t) = − c2
2c1

(a+ 2)(log(1 + t)− log(1− t))D2(t) + h(t), (18)

where h(t) is a polynomial. We shall write D2(t) = 2c21k(t) where

k(t) :=
1

2
ξ21(t)−

1

a
(1− t2)ξ̇21(t). (19)

Lemma 3. The following identity holds:

∫ 1

0

k(t)dt = 0.

Proof. Using integration by parts, (11) and (12) we have
∫ 1

0

(

1

2
ξ21(t)−

1

a
(1 − t2)ξ̇21(t)

)

dt =

∫ 1

0

1

2
ξ21(t)dt−

1

a
(1− t2)ξ̇1(t)ξ1(t)|10 +

∫ 1

0

1

a
ξ1(t)[(1 − t2)ξ̈1(t)− 2tξ1(t)]dt=

∫ 1

0

(

1

2
ξ21(t)+

1

a

[

−a
2
ξ21(t) +

1− t2

2
ξ1(t)ξ̈1(t)

])

dt =
1

2a

∫ 1

0

(1− t2)ξ1(t)ξ̈1(t)dt = 0.

Last equality follows because ξ1 is an orthogonal polynomial in [−1, 1] with respect

to the weight 1 − t2, hence, orthogonal to ξ̈1 and the product of both polynomials
is an even function. �

Let K(t) be the primitive of k(t) such that K(0) = 0. Notice that after Lemma
3, K(1) = 0. Now we shall apply the following result

Lemma 4. Let g be a holomorphic function in a simply connected domain contain-
ing γ+ and let G be a primitive of g. Then

∫

γ+
g(t) log(1−t)dt = 2π i(G(1)−G(0)) =

2π i
∫ 1

0 g(t)dt.

Using Lemmas 3 and 4 we have
∫

γ+

log(1− t)D2(t)dt = 2c21

∫

γ+

log(1− t)k(t)dt = 0

and then, from (18),
∫

γ+
DM (t)dt = 0.

The following expressions are easily obtained

DM,−(t) = DM,+(t)− π i
c2
c1
(a+ 2)D2(t),

D4,−(t) = D4,+(t)− 2π i
c2
c1
(a+ 2)DM,+(t)− π2 c

2
2

c21
(a+ 2)2D2(t), (20)

x1;3(t)DM,−(t) =
t

1 + µ
DM,+(t)− π i

c2
c1

(a+ 2)

1 + µ
tD2(t),

where DM,+(t) and D4,+(t) are odd and even functions respectively. We recall also
that D2(t) is an even function. Therefore,

∫

γ−◦γ+

DM (t)dt,

∫

γ−◦γ+

D4(t)dt and

∫

γ−◦γ+

x1;3DM (t)dt
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reduce to linear combinations of
∫

γ+
DM (t)dt,

∫

γ+
D2(t)dt and

∫

γ+
tD2(t)dt which

are equal to zero.
Furthermore γ−1

− ◦ γ−1
+ is the complex conjugate of γ− ◦ γ+. Moreover, we know

that log(1 + t) − log(1 − t) does not change determination after traveling through
γ− ◦ γ+. Then, the same is true for DM ,D4 and x1;3DM . Therefore

∫

Γ
DM ,

∫

Γ
D4

and
∫

Γ
x1;3DM are all zero.

Using (17), (43) and (44) (see appendix 1) we get that after traveling along Γ
the following elements are zero

x1;2,4, x3;2,4, x3;4,4, x2;1,2, x2;2,3, x2;1,4, x4;1,4, x4;3,4.

This ends the proof of Proposition 2. �

Proof of Proposition 3. We begin with the differential equations

ẋ2;2,2,4(t) = r−2(t)x4;2,2,4(t)− 2r−3(t)(2x4;2(t)x1;2,4(t) + x1;2,2(t)x4;4(t)),

ẋ4;2,2,4(t) = −r(t)x2;2,2,4(t)− 2x2;2(t)x1;2,4(t)− x2;4(t)x1;2,2(t) + r(t)x22;2(t)x2;4(t).
(21)

To solve previous equations and to obtain the values at the end of the path, we use
the elementary “variation of the constants” method, which reduces the solution to
compute quadratures, and requires also the final values of the first order variational
equations at the end of the paths, which are obtained from Proposition 1. The
same method will be used in appendix 1 to obtain the solutions of second order
variational equations. After traveling along γ− ◦ γ+ we get

x2;2,2,4 =

∫

γ−◦γ+

(x1;2,2(t)D4(t) + 2x1;2,4(t)DM (t)− r(t)x22;2(t)x
2
2;4(t))dt, (22)

where x1;2,2(t), x1;2,4(t), are the solutions of (17) with initial conditions x1;2,2(0) = 0
and x1;2,4(0) = 0. In a similar way we get

x4;2,4,4 =

∫

γ−◦γ+

(−2x1;2,4(t)DM (t)− x1;4,4(t)D2(t) + r(t)x22;2(t)x
2
2;4(t))dt. (23)

To prove Proposition 3, it is sufficient to prove that the integrals in (22) and (23)
are real and different from zero. From (22) and (23)

x2;2,2,4 + x4;2,4,4 =

∫

γ−◦γ+

(x1;2,2(t)D4(t)− x1;4,4(t)D2(t))dt. (24)

On the other hand, using (17), a simple computation shows that

x1;2,2(t)D4(t)− x1;4,4(t)D2(t) =
d

dt
[(−x1;2,2(t)x3;4,4(t) + x1;4,4(t)x3;2,2(t)].

We recall that, if p is odd, x1;2,2(t) and x3;2,2(t) are polynomials equal to zero at
t = 0. This implies that the primitive involved in (24) becomes null at both ends.
Therefore x2;2,2,4 + x4;2,4,4 = 0 and it is sufficient to consider x2;2,2,4.

We claim that the following relations hold (see appendix 2 for the proofs)
∫

γ−◦γ+

r(t)x22;2(t)x
2
2;4(t)dt = 2π2c21c

2
2(a+ 2)2

∫ 1

0

r(s)ξ41(s)ds, (25)

∫

γ−◦γ+

x1;2,2(t)D4(t) =

∫

γ−◦γ+

x1;2,4(t)DM (t) = 8π2c21c
2
2

(a+ 2)2

1 + µ

∫ 1

0

K2(s)ds. (26)
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Therefore we obtain the following real expression for x2;2,2,4

x2;2,2,4 = 24π2c21c
2
2(a+ 2)2

∫ 1

0

[

1

1 + µ
K2(t)− 1

12a
(1− t2)ξ41(t)

]

dt.

Next lemma ends the proof of Proposition 3.

Lemma 5. The following inequality holds for any p > 2

Z :=

∫ 1

0

[

1

1 + µ
K2(t)− 1

12a
(1− t2)ξ41(t)

]

dt > 0.

This lemma will be proved in the next section. We recall that ξ1(t) and K(t)
are polynomials of degrees p− 1 and 2p− 1, respectively. So, for a given p, not too
large, one can compute exactly the value of Z. To illustrate some of the difficulties
that appear to prove that Z > 0, for arbitrary p > 2, we show first a couple of plots.
Let us introduce

Ileft =

∫ 1

0

1

1 + µ
K2(t) dt, Iright =

∫ 1

0

1

12a
(1− t2)ξ41(t) dt, (27)

both integrands being non-negative everywhere. Figure 4 left shows, for a moderate
value p = 9, the function ξ1, i.e., the Jacobi polynomial P 1,1

8 with the normalization

introduced in Section 3 and also the functions
1

1 + µ
K2(t),

1

12a
(1− t2)ξ41(t) after

multiplication by a suitable constant to make them visible. One can observe that
the dominant contributions to the integrals come from a narrow domain close to
t = 1. We shall see in the proof that this domain is O(a−1) and it is essential for
the proof. On the right part of the figure we display the ratio R(p) = Ileft/Iright as
a function of log(a(p)) up to p = 3 162, the first value of p for which a(p) > 107,
recalling a(p) = p2 + p− 2. The computations are done exactly (using PARI [2]) in
rational arithmetic; some fractions require lots of digits. For instance, the integral
in Z multiplied by 1 + µ, requires up to 4 273 digits in the numerator and up to
4 293 in the denominator for p up to 3 162. Values of R(p) for small p are shown
in Table 1. One checks that for p = 2 the ratio is 1: both integrals are equal and
cancel. One can also observe that R(p) behaves almost linearly as a function of
log(a(p)). A fit suggests R(p) ≈ α + β log(a(p)) with β = 3/4. We shall comment
on this behaviour in Remark 6.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.25  0.5  0.75  1
 0

 4

 8

 12

 0  4  8  12  16

Figure 5. Left: The solution ξ1 for p = 9 and the corresponding
integrands in (27) multiplied by 5 × 104. The largest one is the
term in K2. Right: The ratio R(p) vs log(a(p)).
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p R(p) p R(p)
2 1 11 22759394912/5308411131
3 2 12 16777562286/3791260061
4 172/67 13 1301661512339/285994227707
5 663/223 14 3937129140486/843537994141
6 3952/1201 15 69209389132017/14494323713237
7 711763/200413 16 717917637801596207/147261612942021091
8 9537221/2527823 17 41008730304053787586/8253073211613057511
9 99832/25177 18 105957929821568901427/20952458480229302251
10 404790839/97889959 19 91823182181213244502/17863603738874767317

Table 1. The ratio R(p) = Ileft/Iright for small values of p.

5. Proof of lemma 5. Before proving (27) we sketch the steps to be followed.

• First we look at the limit behaviour of ξ1(t) near t = 1 as p goes to infinity. A
suitable scaling shows that they tend to the J1 Bessel function (see, e.g., [1]).

• We introduce t2 = 1 − 4s2/a ∈ [0, 1] where s2 will be selected as a rational
number close to the second positive zero of J1. Then we write

Z >

∫ 1

t2

1

1 + µ
K2(t) dt−

∫ 1

0

1

12a
(1 − t2)ξ41(t) dt =

I
[t2,1]
left (ξ1)− (I

[0,t2]
right (ξ1) + I

[t2,1]
right (ξ1)), (28)

where I
[t∗,t∗∗]
left (ξ1) denotes the integral Ileft but with the integration restricted

to the interval [t∗, t∗∗]. The notation I
[t∗,t∗∗]
right (ξ1) has a similar meaning.

• The integrals on [0, t2] and [t2, 1] are bounded using different approximations
of ξ1.

Lemma 6. Under the change of variables t = 1 − 4s/a the functions ξ1(t), which
depend on p, tend to a limit function f(s) in any compact domain of the form s ∈
[0, sf ] when p→ ∞. Furthermore the limit function satisfies f(s) = J1(

√
8s)/

√
2s,

where J1 denotes the Bessel function of first order.

Proof. We recall that ξ1(t) is a polynomial solution of (11) of degree p − 1, which
has been normalised so that ξ1(1) = 1. The change of variables t = 1− 4s/a leads
to the equation

(

s− 2

a
s2
)

d2ξ1
ds2

+

(

2− 8

a
s

)

dξ1
ds

+ 2ξ1 = 0, ξ1(0) = 1, (29)

where we denote the new dependent variable as ξ1(s). Letting a → ∞ we obtain,
for bounded values of s,

s
d2f

ds2
+ 2

df

ds
+ 2f = 0, f(0) = 1, (30)

where we denote as f the limit function. Let ξ1(s) =
∑

n≥0 bns
n, b0 = 1 and

f(s) =
∑

n≥0 fns
n, f0 = 1 be the expansions of ξ1 and f around s = 0. From (29)

and (30) we obtain the recurrences

bn+1 = −2(1− n(n+ 3)/a)

(n+ 1)(n+ 2)
bn, fn+1 = − 2

(n+ 1)(n+ 2)
fn, (31)
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both of them to be compared later. In particular fn = (−2)n

n!(n+1)! . Introducing

σ =
√
8s it is immediate to identify f(s) = J1(σ)/

√
2s. �

Note that t = 0 corresponds to s = a/4. Now we select a fixed value of s, for
instance close to the second positive zero of f , ssecond ≈ 929/151.We take the value
of s as s2 = 929/151 and then t2 = 1− 4s2/a, depends on a. From now on we shall
consider p ≥ 5 in order to have t2 ∈ [0, 1].

Let us consider first the integrals in (28) on [t2, 1] and use the change t = 1−4s/a
introduced in Lemma 6. To simplify formulas, we shall keep the same notation ξ1(s)
for the function ξ1 expressed in terms of the variable s.

The idea is to approximate ξ1 by the expansion to order 16 of f , that is f̃(s) =
∑16
n=0 fns

n. To bound the error we note that from (31) it follows that |f(s) −
f̃(s)| and |df/ds(s)−df̃/ds(s)| can be bounded in [0, s2] by |f17|max{s172 , 17s162 } <
5 × 10−12 =: ǫ1. In a similar way, if we introduce ξ̃1(s) =

∑16
n=0 bns

n, we get

|ξ1(s) − ξ̃1(s)| < ǫ1 and |dξ1/ds(s) − dξ̃1/ds(s)| < ǫ1. Furthermore, it is clear that

ξ̃1 is a polynomial of degree 16 in s and of degree 15 in a−1 with rational coefficients.

So, we can write ξ̃1(s) − f̃(s) =
∑15

k=1 a
−kQk(s) for some polynomials Qk(s) that

can be computed using (exact) rational arithmetic. For p ≥ 3 162 we get

|ξ̃1(s)− f̃(s)| < 1.9× 10−7.

The same bound holds for |ξ̃′1(s)− f̃ ′(s)| where ′ denotes d/ds. Then, for s ∈ [0, s2],

|ξ1(s)− f̃(s)| < 2× 10−7 =: ǫ,

∣

∣

∣

∣

∣

dξ1
ds

(s)− df̃

ds
(s)

∣

∣

∣

∣

∣

< ǫ. (32)

Moreover, the following inequalities, to be used in the next lemmas, are trivial for
0 ≤ s ≤ s2

s
∣

∣

∣
f̃
∣

∣

∣
≤ 1, s

∣

∣

∣
f̃2
∣

∣

∣
≤ 1, s

∣

∣

∣
f̃3
∣

∣

∣
≤ 1, (33)

∣

∣

∣
f̃
∣

∣

∣
+ s

∣

∣

∣

∣

∣

df̃

ds

∣

∣

∣

∣

∣

≤ 1, f̃2 + s
df̃

ds

2

≤ 1. (34)

Using the variable s we can write

I
[t2,1]
right (ξ1) =

8

3a3

∫ s2

0

s

(

1− 2s

a

)

ξ41(s)ds <
8

3a3

∫ s2

0

sξ41(s)ds =: J
[0,s2]
right (ξ1)

and

I
[t2,1]
left (ξ1) =

8(a− 2)

a4

∫ s2

0

[
∫ s

0

(ξ1(u)
2 − u(1− 2u/a)ξ′1(u)

2)du

]2

ds =: I
[0,s2]
left (ξ1).

We write some inequalities:

I
[t2,1]
right (ξ1) ≤ J

[0,s2]
right (ξ1) ≤ J

[0,s2]
right (f̃) + |J [0,s2]

right (ξ1)− J
[0,s2]
right (f̃)|, (35)

I
[t2,1]
left (ξ1) ≥ I

[0,s2]
left (f̃)− |I [t2,1]left (ξ1)− I

[0,s2]
left (f̃)|, (36)

where I∗∗ (f̃) and J
∗
∗ (f̃) are defined as the corresponding I∗∗ (ξ1) and J

∗
∗ (ξ1) replacing

ξ1 by f̃ .
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Lemma 7. With the notation introduced before, the following bounds hold

a3I
[0,s2]
left (f̃) > Ml, a3J

[0,s2]
right (f̃) < Mr,

where Ml and Mr can be taken equal to 0.55555 and 0.13310 respectively.

Proof. A symbolic manipulator (PARI) has been used to compute the integrals
above using (exact) rational arithmetic. The values obtained, displaying only the
first 10 decimal digits, are 0.5555528023... and 0.1330950485... . �

Lemma 8. The differences of integrals using ξ1 and f̃ are bounded as follows:

a3|J [0,s2]
right (ξ1)− J

[0,s2]
right (f̃)| < 0.2× 10−4 =: Er,

a3|I [t2,1]left (ξ1)− I
[0,s2]
left (f̃)| < 0.5× 10−3 =: El.

Proof. We write ξ1(s) = f̃(s) + δ(s). Using (32) we have |δ(s)| < ǫ for s ∈ [0, s2].
Then the inequalities (33) give, even using very rough estimates,

|J [0,s2]
right (ξ1)− J

[0,s2]
right (f̃)| ≤ 8

3a3

(

(4ǫ+ 6ǫ2 + 4ǫ3)s2 +
1

2
ǫ4s22

)

< 0.2× 10−4.

For the left integral we write

|I [t2,1]left (ξ1)− I
[0,s2]
left (f̃)| = 8

a3
(1− 2/a)

∣

∣

∣

∣

∫ s2

0

K(s; ξ1)
2ds−

∫ s2

0

K(s; f̃)2ds

∣

∣

∣

∣

,

where

K(s; ξ1) :=

∫ s

0

[

ξ1(u)
2 − u(1− 2u/a)

(

dξ1
du

(u)

)2
]

du

and similar for K(s; f̃).

As before, using ξ1(s) = f̃(s)+δ(s) and ξ′1(s) = f̃ ′(s)+δ′(s), with |δ(s)|, |δ′(s)| <
ǫ for s ∈ [0, s2] in K(s; ξ1), we get

K(s; ξ1) = K(s; f̃) +A(s),

where

A(s) =

∫ s

0

[

2δf̃ + δ2 − u

(

1− 2u

a

)

(2δ′f̃ ′ + (δ′)2)

]

du.

Therefore

|I [t2,1]left (ξ1)− I
[0,s2]
left (f̃)| = 8

a3
(1 − 2/a)

∣

∣

∣

∣

∫ s2

0

(2A(s)K(s; f̃) +A(s)2)ds

∣

∣

∣

∣

.

Moreover using (34) we obtain

|A(s)| ≤
∫ s

0

(

2ǫ|f̃ |+ ǫ2 + u

∣

∣

∣

∣

1− 2u

a

∣

∣

∣

∣

(2ǫ|f̃ ′|+ ǫ2)

)

du ≤
∫ s

0

(

ǫ2(1 + u) + 2ǫ(|f̃ |+ u|f̃ ′|)
)

du ≤ 2ǫs+ ǫ2
(

s+
s2

2

)

.

Then we obtain the bound
∫ s2

0

A(s)2ds ≤ 4

3
ǫ2s32 + 4ǫ3

(

s32
3

+
s42
8

)

+ ǫ4
(

s32
3

+
s42
4

+
s52
20

)

< 2× 10−11 =: ∆1.

In a similar way we get |K(s; f̃)| ≤ s for s ∈ [0, s2] and
∫ s2

0

|K(s; f̃)A(s)| ≤ 2

3
ǫs32 + ǫ2

(

s32
3

+
s42
8

)

< 0.311× 10−4 =: ∆2.
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Finally we obtain

a3|I [t2,1]left (ξ1)− I
[0,s2]
left (f̃)| ≤ 8(1− 2/a)(2∆2 +∆1) < 0.5× 10−3.

�

Let us consider now I
[0,t2]
right (ξ1). The following lemma provides an approximation

for ξ1 in [0, t2].

Lemma 9. In the interval [0, t2] the function ξ1(t) is bounded by

|ξ1(t)| <
1.69√

p− 1(p+ 1)
(1− t2)−3/4. (37)

Proof. Let us introduce the new variables z and θ in (11) as

z(t) = ξ1(t)
(

1− t2
)3/4

, θ(t) =

(

n+
3

2

)

(π

2
− arccos(t)

)

, (38)

where n = p− 1 (see the beginning of Section 3). From (38) it follows

dz

dθ
= −y, dy

dθ
= z − h(θ)z, h(θ) =

3

(2n+ 3)2 cos2(θ/(n+ 3/2))
,

and introducing polar coordinates z = R cos(γ), y = R sin(γ) and ϕ = γ − θ we
reach the simple system

dR

dθ
= −1

2
R sin(2(θ + ϕ))h(θ),

dϕ

dθ
= −1

2
h(θ)(1 + cos(2(θ + ϕ))), (39)

where R0 := R(t = 0) = |ξ1(0)|, if we assume p odd. For p even some sin, cos

functions are exchanged and then R0 = |ξ̇1(0)/(n + 3/2)|. In any case, ϕ0 :=
ϕ(t = 0) is taken as 0 or π in order to have R0 cos(ϕ0) = ξ1(0) if p is odd, and

R0 cos(ϕ0) = −ξ̇1(0)/(n+ 3/2), if p is even.
The equations (39) provide immediately

R0 exp(−B(θ)/2) ≤ R(θ) ≤ R0 exp(B(θ)/2), −B(θ) ≤ ϕ(θ) − ϕ0 ≤ B(θ), (40)

where

B(θ) =

∫ θ

0

h(τ)dτ =
3/2

2n+ 3
tan(θ/(n+ 3/2)) ≤ 3/2

2n+ 3

t2
√

1− t22
<

6√
512s2

=: ∆,

and we have used t2 = 1− 4s2/a.
Now we recover ξ1(t) = R(t) cos(ϕ+ θ)(1 − t2)−3/4. Then

|ξ1(t)| ≤ R(t)(1 − t2)−3/4 ≤ R0 exp(∆/2)(1− t2)−3/4.

Using the bounds given in (12), for |ξ1(0)| and |ξ̇1(0)|, for odd and even p respec-
tively, we get

|ξ1(t)| ≤
√

8/π
1

(p+ 1)
√
p− 1

exp(∆/2)(1− t2)−3/4

and (37) follows easily. �

Remark 4. Using also a rough bound from dϕ/dθ as given in (40) we obtain
variations of ϕ bounded by 0.107, when expressing ϕ as a function of t. It is also
clear that for any fixed t, away from 1, one has bounds O(a−1/2). Better estimates
on R,ϕ and therefore on ξ1, can be obtained using averaging to study the behaviour
of the solutions of (39). See also remark 6.
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Remark 5. The proof of Lemma 9 can be easily extended to arbitrary Gegenbauer

polynomials C
(α)
n (see [1] for definition and properties), by introducing ξ(t)(1 −

t2)α/2, θ = (n+ α)(π/2 − arccos(t)).

Lemma 10. The following bound holds for all p > 3 162

a3
∣

∣

∣
I
[0,t2]
right (ξ1)

∣

∣

∣
< 0.01382 =: Rr.

Proof. From Lemma 9 one has to bound

∣

∣

∣
I
[0,t2]
right (ξ1)

∣

∣

∣
<

∫ t2

0

1

12a

(

1.69√
p− 1(p+ 1)

)4
(

1− t2
)−2

dt.

Using that
1

(p− 1)2(p+ 1)4
< 1.00032a−3 holds for p > 3 162, the integral

∫ t2
0
(1−

t2)−2dt =
1

4

(

2t2
1− t22

+ log

(

1 + t2
1− t2

))

and the explicit value t2 = 1 − 4s2/a, the

lemma follows easily. �

Finally, from (28), (35), (36) and the above lemmas we can write

a3Z ≥Ml − El − (Rr +Mr + Er) > 0.4 .

This ends the proof of Proposition 3 and therefore finishes the proof of
Theorem 4. �

Remark 6. In fact, the neglected integral I
[0,t2]
left (ξ1) has an important (positive)

contribution to Z in the sense that the ratio I
[0,1]
left (ξ1)/I

[t2,1]
left (ξ1) tends to ∞ when

p→ ∞.

To give some idea about the claim above, let us replace s2 by sm = A with a
fixed value A >> 1 and, hence, A << a for a large enough. Then we replace t2
by tm = 1 − 4sm/a. We can derive an approximation for ξ1(t) in [0, tm] by using
the same variables introduced in the proof of Lemma 9. Now |ϕ(θ) − ϕ(0)| < ∆m

where ∆m = 6/
√
512A = O(A−1/2) as follows from (40). In a similar way R(θ) =

R0(1 +O(A−1/2)) for t ∈ [0, tm].
Then we obtain the approximations

ξ1(t) ≈ R0 cos(ϕ0) cos(θ)(1 − t2)−3/4 ≈ is

√

8

π
a−3/4 cos(θ)(1 − t2)−3/4,

where we recall θ = (n + 3/2)(π/2 − arccos(t)) and is is the sign of the dominant
term in ξ1(s) (see (12)). The factor cos(θ) has to be replaced by sin(θ) for p even.
We assume p odd in what follows.

Introducing ψ = θ/(n+ 3/2) we obtain the following approximation

ξ1(ψ) ≈ is

√

8

π
a−3/4(cos(ψ))−3/2 cos((n+ 3/2)ψ).

Using ψ as independent variable the function k introduced in (19) becomes, up to
some constant

k(ψ) =
1

2
a−3/2(cos(ψ))−3(cos((n+ 3/2)ψ))2− (41)

a−5/2

[

3

2
(cos(ψ))−5/2 sin(ψ) cos((n+3/2)ψ)−(n+

3

2
)(cos(ψ))−3/2 sin((n+3/2)ψ)

]2

.
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As n is large, when we integrate (41) one can replace (cos((n+3/2)ψ))2 and (sin((n+
3/2)ψ))2 by the average value 1/2 and sin((n + 3/2)ψ) cos((n + 3/2)ψ) by zero.
Furthermore, if A is large enough, one can neglect the square of the first term inside
[∗]2 in front of the square of the second one. Summarizing, we can approximate k(ψ)
by −(1/4)a−3/2(cos(ψ))−3.

Let χ = π
2 − ψ. Then up to some constant, the left integral I

[0,tm]
left (ξ1), can be

written (up to some constant) as

1

8a3

∫ π/2

O(a−1/2)

(

∫ π/2

χ

du

(sin(u))2

)2

sin(χ)dχ =
1

8a3

∫ π/2

O(a−1/2)

cos2 χ

sinχ
dχ. (42)

The dominant contribution to (42) comes from the domain χ = O(a−1/2) and it
is immediate that the result is O(log(a)). This proves the remark. Note that this
also explains the results displayed in Figure 4 right. We do not state this result as
a Proposition because, for shortness, the bounds of the errors in the application of
averaging are not made explicit.

6. Conclusions. We have presented a very simple mechanical system for which,
for some exceptional values of a mass ratio, a theoretical proof of non-integrability
has been not possible with other available methods. A new approach, based on the
use of higher order variational equations introduced in [10] or, equivalently, on the
jet transport along a suitable chosen path in complex time, allows to establish the
desired non-integrability result. The proof involves the use of different singularities
and, hence, some amount of global information.

Appendix 1. For completeness in this appendix we give explicitly the second vari-
ational equations for the variables which appear in (10).

ẋ2;1,2(t) = r−2(t)x4;1,2(t)− 2r−1(t)ẋ2;2(t),
ẋ4;1,2(t) = −r(t)x2;1,2(t)− x2;2(t),

ẋ2;1,4(t) = r−2(t)x4;1,4(t)− 2r−1(t)ẋ2;4(t),
ẋ4;1,4(t) = −r(t)x2;1,4(t)− x2;4(t),

ẋ2;2,3(t) = r−2(t)x4;2,3(t)− 2r−1(t)x1;3(t)ẋ2;2(t),
ẋ4;2,3(t) = −r(t)x2;2,3(t)− x1;3(t)x2;2(t),

ẋ2;3,4(t) = r−2(t)x4;3,4(t)− 2r−1(t)x1;3(t)ẋ2;4(t),
ẋ4;3,4(t) = −r(t)x2;3,4(t)− x1;3(t)x2;4(t).

See equations (7), (11), (17) and (21) for the other variational equations of first,
second and third order used in the proof.

Using standard methods, as explained in the proof of Proposition 3, we obtain
the following values after traveling along γ− ◦ γ+

x2;1,2 =

∫

γ−◦γ+

DM (t)dt, x2;1,4 =

∫

γ−◦γ+

D4(t)dt,

(43)

x4;1,2 =

∫

γ−◦γ+

−D2(t)dt, x4;1,4 =

∫

γ−◦γ+

−DM (t)dt,
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x2;2,3 =

∫

γ−◦γ+

x1;3(t)DM (t)dt, x2;3,4 =

∫

γ−◦γ+

x1;3(t)D4(t)dt,

(44)

x4;2,3 =

∫

γ−◦γ+

−x1;3(t)D2(t)dt, x4;3,4 =

∫

γ−◦γ+

−x1;3(t)DM (t)dt.

Appendix 2. In this appendix we give the details for the proof of (25) and (26).
Using the notation introduced in Section 4 we get, ξ2,−(t) = ξ2,+(t)−π i(a+2)ξ1(t),
and

r(t)ξ21(t)ξ
2
2,−(t) = r(t)ξ21 (t)ξ

2
2,+(t) + π(a+ 2)r(t)ξ31(t)(−2 iξ2,+(t)− π(a+ 2)ξ1(t)),

where r(t)ξ21(t)ξ
2
2,+(t) is an even function of t. Then

∫

γ−◦γ+

r(t)ξ21 (t)ξ
2
2(t)dt = −π(a+2)

∫

γ+

r(−t)ξ31(−t)[−2 iξ2,+(−t)−π(a+2)ξ1(−t)]dt

= −2π i(a+ 2)

∫

γ+

r(t)ξ31(t)ξ2,+(t)dt = −π i(a+ 2)2
∫

γ+

log(1− t)r(t)ξ41 (t)dt.

Now using Lemma 4 we obtain the following identity, proving claim (25) in Section 4
∫

γ−◦γ+

r(t)ξ21 (t)ξ
2
2(t)dt = 2π2(a+ 2)2

∫ 1

0

r(t)ξ41 (t)dt.

Let us consider now the first integral in (26). From (20) we obtain

x1;2,2(t)D4,−(t) = x1;2,2(t)D4,+(t)− 2π i
c2
c1
(a+ 2)x1;2,2(t)DM,+(t)−

c22
c21
π2(a+ 2)2x1;2,2(t)D2(t),

where x1;2,2(t)D4,+(t) is an even function. Then
∫

γ−◦γ+

x1;2,2(t)D4(t) = 2π i
c2
c1
(a+ 2)

∫

γ+

x1;2,2(−t)DM,+(−t)dt+

c22
c21
π2(a+ 2)2

∫

γ+

x1;2,2(−t)D2(−t)dt.

The second integral above is equal to zero because x1;2,2(t) and D2(t) are polyno-
mials. Using (18) and Lemma 4

∫

γ+

x1;2,2(t)DM,+(t)dt =
c2
2c1

(a+ 2)

∫

γ+

x1;2,2(t)D2(t) log(1− t)dt =

c2
c1
(a+ 2)π i

∫ 1

0

x1;2,2(t)D2(t)dt.

Taking into account that D2(t) = 2c21k(t) and

x1;2,2(t) = − 2c21
1 + µ

∫ t

0

K(s)ds

we obtain
∫

γ+

x1;2,2(t)DM,+(t)dt = 4π ic31c2
(a+ 2)

1 + µ

∫ 1

0

K2(t)dt. (45)
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Therefore we obtain finally
∫

γ−◦γ+

x1;2,2(t)D4(t) = 8π2c21c
2
2

(a+ 2)2

1 + µ

∫ 1

0

K2(t)dt.

This proves the required expression for the first integral in (26).
In a similar way it is not difficult to see that

∫

γ−◦γ+

x1;2,4(t)DM (t) = −π ic2
c1
(a+2)

[

∫

γ+

x1;2,2(t)DM,+(t) +

∫

γ+

x1;2,4(t)D2(t)dt

]

.

Now we use an argument similar to the one used to prove that the expression in
(24) is zero. From

x1;2,2(t)DM (t)− x1;2,4(t)D2(t) =
d

dt
[−x1;2,2(t)x3;2,4(t) + x1;2,4(t)x3;2,2(t)]

it follows
∫

γ+

(x1;2,2(t)DM (t)− x1;2,4(t)D2(t))dt = 0

and, hence,
∫

γ−◦γ+

x1;2,4(t)DM (t) = −2π i
c2
c1

(a+ 2)

∫

γ+

x1;2,2(t)DM,+(t)dt

which proves the second part of (26) using (45).
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24 REGINA MARTÍNEZ AND CARLES SIMÓ
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[12] J. J. Morales, C. Simó and S. Simón, Algebraic proof of the non-integrability of Hill’s Problem,
Ergodic Theory and Dynamical Systems, 25 (2005), 1237–1256.
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