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Abstract. The unbounded motions of a swinging
Atwood’s machine are analysed by blowing up the
singularity at infinity. The asymptotic motion is reduced
to a gradient flow on an ellipsoid. By studying the flow
on this ellipsoid it is shown that the unbounded orbits
oscillate either an infinite number of times or not at all,
depending only on a critical value of the mass ratio.

1. Introduction

Advances in the research of non-linear dynamical
systems during the past two decades [1] have
renewed interest in the study of low-dimensional
mechanical models since they exhibit many compli-
cated types of motion from periodic and quasi-
periodic to chaotic [2,3]. In fact, the problems
posed by these simple systems can be quite hard,
and as Amold has remarked [4], ‘analyzing a
general potential system with two degreees of free-
dom is beyond the capability of modern science’.
Both the analytic and numerical study of simple
mechanical systems can be further complicated by
the presence of singularities, i.e. points where the
relevant differential equations are undefined. The
simplest example of a singularity is the collision of
two or more point particles in the Newtonian n-body
problem. Regularisation is the name given to a host
of mathematical techniques that allow one to solve
for the orbits in the vicinity of a singularity [5].
Regularisation techniques are of practical interest,
for instance in solving for the near collision orbits
between artificial bodies and celestial bodies.
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Résumé. On analyse les mouvements non bornés d’une
machine d’Atwood oscillante en faisant exploser la
singularité 4 I'inifini. Le mouvement asymptotique se
réduit a un flot tangent 4 un gradient sur un ellipsoide.
En étudiant le flot sur cet ellipsoide, on montre que les
orbites non bornées oscillent une infinité de fois ou pas
du tout d’apres la valeur du rapport des masses
comparées & une valeur critique.

A particularly simple and geometrically appealing
regularisation procedure was introduced sometime
ago by McGehee, who found that by a simple
change of variables it is possible to blow up the
singular set where the differential equations are
undefined [6]. Moreover, the motion on this new
set, the so-called collision manifold, turns out to be
very simple since it is usually a gradient-like flow.

Figure 1. Swinging Atwood's machine (sam). The
configuration space variables are the polar coordinates
(r, 6) of the swinging mass.
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The motion on the collision manifold yields infor-
mation about orbits that pass close to the singularity
because of the continuous dependence on initial
conditions of an analytic flow. A good introduction
to blowing up singularities and gradient-like flows is
given by Devaney (8, 9]. Some time later Lacomba
and Sim6 pointed out that the same method could
be used to analyse the unbounded motions arising
from problems in celestial mechanics [10]. In
essence, they showed that the unbounded orbits can
also approach a singular set, which when blown up
allows one to analyse the unbounded orbits by a
simple geometric method.

A simple non-linear Hamiltonian system that has
received considerable attention of late is the swing-
ing Atwood’s machine (sam) [11, 12, 13]. As shown
in figure 1, saM is an ordinary Atwood’s machine in
which one of the masses is allowed to swing in a
plane. sam has two degrees of freedom that are
taken to be the polar coordinates (r,6) of the
swinging mass. The system is of interest because it is
very simple yet exhibits the full spectrum of motions
from integrable to chaotic [14, 15, 16]. The equa-
tions of motion for sam are singular when the radial
coordinate r approaches 0. These collision orbits
have been previously analysed by using the
McGehee regularisation procedure [17]. In this
paper we observe that the orbits are also singular
when r approaches infinity. The asymptotic behav-
iour of these orbits turns out to be simple to under-
stand by blowing up the singularity at infinity.
Specifically, we show that if the mass ratio defined
by u=M/m satisfies ue(1/17,1] then the orbits
oscillate an infinite number of times about the down-
ward (0= 0) axis as r approaches infinity. The tech-
nique illustrated here should be useful in the study
of a wide variety of Hamiltonian systems exhibiting
unbounded orbits.

2. Unbounded orbits
The Hamiltonian for sam is simply the sum of the
kinetic and potential energy:

2
Py
H(r’ o‘pr* p@) = T(p’ q) + V(q) =2(m+ M)
pPi
+ Smr +gr(M —m cos 6) 1)

where the canonical momenta are p,=(m+ M)r,
pe=mr'6, and g is the gravitational acceleration
constant. Let & denote a particular value of the
energy. The kinetic energy is positive definite, mak-
ing it easy to show that all motion is bounded by
r<h/(u—cos 6)g whenever u>1. Unbounded
motions exist only when u<1. The region in confi-
guration space where the unbounded orbits exist is
also limited by the Hamiltonian. For instance, if
1#=1 then the motion is bounded in all directions

Figure 2. Typical unbounded motion of sam undergoing
damped oscillations about the downward (6 =0) axis.

except 6=0. If u<1 then unbounded orbits can
exist when 0 €[ —cos™'(u—h/gr), cos™'(u—h/gr)].

Extensive numerical simulations indicate that all
unbounded orbits behave pretty much as illustrated
in figure 2. As r approaches infinity the orbits
undergo damped oscillations about the downward
(6 =0) axis. In other words, in the limit as 7— © and
r(f) — =<, the angle 6(r) —0. It is also observed that
for very small mass ratios the oscillations cease. In
either case 6(r) still approaches zero when 0<u<1.
In §3 we will explain these observations by blowing
up the singularity at infinity.

3. Infinity manifold

Hamilton’s equations obtained from (1) are
oH P

op, (m+M)

. 0H p,

i‘:

" dp, mr

)
pr=———=—=—8(M—mcos 0)

. __OoH in 6
Pe= ao——mgrsm.

In order to solve for the unbounded asymptotic
motions of sam we consider a generalisation of the
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change of variables introduced by Lacomba and
Sim6 [10]. In effect, our change of variable blows up

. infinity by taking p=1/r and slows down the time by
- adjusting to a new time scale r<#/Vr. These two
¥ steps, magnifying around the singularity and slowing

down time, -are the key ingredients of any

- McGehee-type regularisation procedure.

Specifically, consider the non-canonical change of
variables (r, 6, p,, po, 1) = (p, 0, v, u. 7) defined by

-1 12 an

p=r 6=6 v=p,.r- U=per—"-

dt/dr=p~12,

The sam equations (2) become

LA _pU el_u
p_(M+m)
u? 2
v -;—m—g(M—mCOSG) 3)
,_ —3uw in g
u =M+ m) mg sin

where the primes indicate differentiation with
respect to 7. The energy relation becomes

2 2

v
ph=m+ﬁ+g(M—m cos 0).

“)

Now, the vector field (3) is analytic on the invar-
iant boundary p=0, denoted by N, and called the
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infinity manifold. The energy relation (4) shows that
N, is a generalised ellipsoid given by

Ny={(p. 0. v, u):p=0.0Y2(m+ M)

+u/2m+g(M — m cos 6) =0} (5)

and is shown in figure 3. Note that from (5) we have
w2m + v*2(m + M) =gm(cos 6 — )

where u=M/m. So, cos@=u and, in particular,
N,=D foru>1, N,=(p=0,60=0, u=0, v=0) for
#=1 and N, is the ellipsoid represented in figure 3
for u<1. Thus the ellipsoid only exists for u<1.

The flow on N, is given by (7) when we take the
asymptotic limit of (3) by setting p=0:

6'=u/m v' =3u*2m

(6)

u'==3uv/2(m+ M)— mgsin 6.

From (6), making the change dr/di=m and
denoting by an overbar the derivative with respect
to 7, we have

6' 2

I

- 3
u D=3uU

= —3uv/2(1+u)—m>gsin 6 )

and the energy relation on the infinity manifold is
v/2(m+ M) + u*2m + g(M — m cos 6) = 0. (8)
To visualise the flow on the infinity manifold we

must find the equilibrium points of (7) and analyse
the local motions near the equilibrium points by
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Figure 3. The infinity manifold N, of sam. Note that if u — 1 then cos” ‘14— 0. and when 1 —0, cos ' u—nl2.



176 J Casasayas et al

Tabie 1. Here we use the notation v* = * [2(m*— M?g]'2,

Equilibrium Characteristic exponents Dimensions of W*, w*
point on N, off N, on N, onH=h Type on N,
1[ =3v* 9? V2 -v* we 0 0
+ - e 2 .
P (0) 4[ T+u ‘((1 T 1om g) ] m+M w2 3 sink
- 1 =30~ 9v? , \? -v” we 2 3
_ 1 L2 )
PO 4[ 1+u _((1+/4)2 16m g) ] m+M w* 0 0 source

calculating the associated eigenvalues. By setting
0=0=1=0, the equilibrium points are found to be

P*(0)=(p=0,6=0,v==2[2(6*= M?)g]"?, u=0)
©

and the eigenvalues are

a 1 -—3v*+ 9?2 Lom? 12 10

*Ta Tru T \Owwr OE (10)
where we have used the notation

v* =% [2(m*— M?)g]"2 (11)

The P*(0) equilibrium point is a sink on N, while
the P7(0) is a source. Since the flow is gradient like
with respect to v, all the orbits not on an equilibrium
point must approach P*(0). Unbounded orbits of
saM approach the infinity manifold via the stable
manifold, W*, and orbits arive from infinity via the
unstable manifold, W", emanating from N,. The
eigenvalues and relative dimensions of the stable
and unstable invariant manifolds are summarised in
table 1.

Furthermore, from equation (10) we see that if
0<u=<1/17 then the sinks and sources on N, have
characteristic exponents with the imaginary part
equal to zero, i.e. they are sinks and sources without
spiralling. On the other hand, if 1/17<u<1 then

(a)

the characteristic exponents have a non-zero imagin-
ary part and we have spiralling sinks and sources.
Hence the flow on N, depends on either 0 < u<1/17
(no spirals) or 1/17< u <1 (spirals) and it is in both
cases gradient like with respect to the v coordinate.
These results allow us to visualise the flow which is
illustrated in figure 4.

Knowledge of the flow on N, tells us about orbits
that pass close to N,, i.e. the unbounded orbits of
saM. We see that 6(t) — 0 for the unbounded orbits
and that these orbits oscillate about the 8 =0 axis
when 1/17< u <1 as mentioned in § 1.

4. Summary

We analysed the unbounded orbits of a swinging
Atwood’s machine by blowing up the singularity at
infinity. The essential idea is to observe that the
vector field can have singularities at infinity and that
motions in the vicinity of the singularity can be
calculated by McGehee’s geometric regularisation
procedure. This technique is illustrated for the
swinging Atwood’s machine and allows us to predict
the general properties of unbounded trajectories;
i.e. the unbounded orbits oscillate about the =0
axis an infinite number of times when 1/17< u<1.
The general technique illustrated with the swinging
Atwood’s machine should find application in a wide

v/

Figure 4. The flow on N,: (a) the case 0<u<1/17; (b) the case 1/17< u<1,
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% variety ‘of Hamiltonian exhibiting

~ unbounded motions.
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