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ABSTRACT

An Atwood’'s machine in which one of the masses swings like a pend:
lum is a simple realization of a conservative, oscillatory system with
two degrees of freedom. A study of this system is undertaken here by
means of: (1) numerical solution to the equations of motiom, (2) pertus
bative solutions, and (3) a laboratory model. The numerical studies
indicate the existence of a wide variety of periodic motions. Perturb:
tive solutions to the so—called Smile and Teardrop trajectories are cor
pared to their numerical counterparts; the agreement is surprisingly
good. Progress toward understanding the global structure of the
periodic motions is also reported.
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CHBAPTER I. Introducing SAM

"Dynamical systems with two degrees of freedom constitute
the simplest type of non—integrable dynamical problems and
possess a very high degree of mathematical interest.”

G.D. Birkhoff, 1917
"Analyzing a general potential system with two degrees of

freedom is beyond the capability of modern science.”

V.I. Arnold, 1974

I. Coupled Oscillators

Two pendula can be connected together in a variety of ways to pro—
duce a coupled oscillator. A simple toy is made by connecting a pair of
pendula with a drinking straw (see Fig. 1-1).
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Drawing one of the bobs aside and then releasing it gives rise to
motion which is characteristic of coupled oscillators. The pendulum
that was initially at rest gradually begins to oscillate until both bobs
are swinging with equal amplitudes. As the process continues, the bob
that was first displaced eventually comes to rest, The starting condi-
tion is now reversed and the pattern will repeat itself. The energy in
the swinging bob is transmitted through the straw to the other bob. 1In

this way, energy is shuttled back and forth between the two oscillators.



A number of coupled pendulum systems have been the subject of
detailed quantitative study. Most notable in this regard are the

Spring—coupled pendulum, the Wilberforce pendulum, and the Elastic pen—

dulum.
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Fig. 2-1

The promising young physicist is hypnotized by the motions of these
simple machines. The trajectories can be absurdly complex or delight-
fully simple., These three systems vary considerably in the degree to
which their possible motions have been analyzed., For instance, any
motion of the Spring-coupled pendulum can be described as a superposi-—
tion of normal modes; the problem is linear and completely solved.‘ The
Elastic pendulum, on the other hand, poses an essentially nonlinear
problem. Periodic motions are known to exist, and a great deal of ana-
lytic and experimental work has been done; but a complete understanding
of the system is still lacking. Active research into the elastic pendu-

.l.

lum is still under way.

* For a detailed discussion of the Spring—coupled and Wilberforce
pendulum, see: A.P French, Vibrations and Waves (Nortonm, New York
1971) Chap. 5.

t A recent study is by E. Breitenberger and R.D. Mueller, "The
elastic pendulum: A nonlinear paradigm”, J. Math, Phys, 22, 6
(1981) .



II. SAM
To this class of machines, I would like to introduce the Swinging

*

Atwood's Machine; hereafter known as SAM. The system is an Atwood's
machine in which one of the masses is allowed to swing. SAM is a hybrid

of a simple pendulum and an Atwood’'s machine.
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Ix/l Swinging Atwood's Machine: SAM
The device is constructed from two masses, M and m, which are con-
nected by a weightless, perfectly flexible and inextensible cord. The
masses are supported by two frictionless and weightless pulleys. The
bob, m, is free to move in the plane. The block, M, is constrained to
move in the vertical direction only, up and down, in one dimension.
There are no dissipative forces in the system so the total emergy is
constant.
The problem is to describe the trajectories of the swinging mass.
For example, what happens if the swinging mass is drawn aside and then
released (see Fig. 1-3)? Suppose, for a moment, that m is much heavier
than M: then m will swing down, away from the pulley. But what happens
when m is a little lighter than M? 1Initially, it swings in toward the

pulley since M is heavier. As m begins to swing, though, it picks up a

¥ An effort is made to use TLA's throughout (Three Letter Acro-
nyms) .



centrifugal pseudo—force which throws it outward., However, the centri-
fugal force diminishes as m gets further from the pulley. So it can’t
go out too far before it heads back in again. Of course, this analysis
is quite naive and intuitive; but it does lead one to suspect that there
may be motions which are confined to an annular region neither too close
nor too far from the pulley.

SAM is as simple to describe as any of the coupled pendulum
machines before it, yet its motions turn out to be astonishingly com-—
plex. It is an essentially nonlinear problem insofar as the interesting
motions are not predicted by the linear theory, and are the result of
nonlinear coupling. The problem is difficult since it is equivalent to
describing the motions of a particle with two degrees of freedom under a

specific noncentral force.

II. Summary of Chapters

Smiles and Teardrops is a state of the art account of SAM. In
Chapter I the equations of motion are derived. Chapter II opens with
some typical numerical solutions. These computer studies illustrate the
basic properties of the system. They suggest the existence of a wide
spectrum of periodic trajectories and also cultivate one’'s intuition,

The remaining chapters concentrate on periodic solutions. A time-
dependent perturbation scheme gives excellent fits for the so—called
Smile and Teardrop trajectories. Smiles (studied in Chapter IV) are
periodic trajectories which derive from the motion of a simple pendulum.
Chapter V deals with solutions that are close ta those of an Atwood's
machine. The simplest solution of this type looks like a teardrop.
Finally, Chapter VI features a formal argument demonstrating the

existence of periodic trajectories,



The last chapter contains a grab-bag of observations, examples, and

comments that could be useful in an undergraduate mechanics course.

IV. How to build SAM'

SAM can be constructed from standard air table equipment., I used
apparatus purchased from the Ealing Corporation., The necessary

ingredients are:

Large air table (4 x 4 ft)
Air blower

Center table pulley
General purpose air pulley
Fine steel cable

Mylar recording tape

Puck (50 grams)

Weights
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Figure 1-4 shows how the parts are assembled.
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The puck constitutes the swinging mass; it glides on the air table
which helps confine it to the vertical plame. A steel cable connects
the puck to a piece of ordinary mylar recording tape which slides across
a frictionless air pulley. The tape is connected to the nonswinging
mass, an adjustable weight, The steel cable passes through a center

table pulley which allows free rotation about the horizontal axis,.

* Patent pending



CHAPTER II. The Equations

"The beauty and almost divine simplicity of these equations

is such that these formulae are worthy to rank with those

mysterious symbols which in ancient times were held directly

to indicate the Supreme Reason at the base of all things.”
A.N. Vhitehead

"You can find Lagrange’s equations for almost anytbing; you

can solve them for almost nothing.”

Nick

I. The Equations of Motionm
An elegant and useful formulation of classical mechanics is pro-

vided by the Lagrange equations,

d 8L _ oL _ o -
dt a(.lJ an—-O' 3—1,2,....n. (2 1)

where qj are the generalized coordinates, and the Lagrangian, L, is the

difference between the kinetic and potential energy:
L=T-YV. (2-2)

Polar coordinates are a natural choice for marking the position of
the swinging mass, with the angular displacement measured counter—
clockwise from the plumb, as shown in Fig. 1-3, Call m the mass of the
swinging pendulum bob and let M represent the other bob. As usual, g

denotes the gravitational acceleration. Then the kinetic energy is
= 1yea 1 (:3 292 -
T = JMr? + am(r? + 12e%), (2-3)
while the potential emnergy is

V= gr(M - mcos®), (2-4)



except for a constant which is omitted, Combining the two yields

(£3 + r202) + %Mi’ + grimcos® — M). (2-5)

=
]
N

Let r = 9 and 6 = 9, then Lagrange's equations become

4 L _ oL
dt 9r  odr
d oL _ aL
dt Py 00
which result in
(m+M)F = mrO? + g(mcos® — M) (2-6)
Jl(mrzé) = -mgr sin@. (2-7)
dt

These two equations admit the following Newtonian interpretation.
Equation (2-6) expresses Newton's second law in the radial coordinate:
the total mass times the acceleration in the radial direction, (m+M)T,
is equal to the sum of the radial forces; the centrifugal pseudo—force,
mré’, and the radial component of the gravitational force,
g{mcos® — M), Equation (2-7) is the same as for a simple pendulum,
except in this instance r#0. The term nr2@ is the angular momentum
while —mgr sin® is the torque. $So this equation says that the time rate
of change of angular momentum is equal to the applied torque,

-
dL

== = N,

dt
>
T

- -
where L = F o

- - -
x p and N = x F. In practice, the equations of motion are

derived more swiftly from Newtonian first principles than the Lagrangian

formalism,



To simplify matters, define

Notice that

p <1, if M < m;
p=1, if M = m;

uw>1l, if M > m,

Equations (2-6) and (2-7) now take on their final form:

(1 + p)T = r62 + g(cos® - p) (2-8)

j%(rzé) = —grsin® or, differentiating: (2-9)

0+22 6+ Es5ine =0, (2-10)
b o r

The total energy (T+V) is constant, since the system is conservative,

.

For convenience divide out a factor of m and define E = i(T+V):
_1,. . 1.
E = E(r’ + r292) + Epr’ + gr(u - cos). (2-11)

It is easy to verify, by differentiating (2-8) and (2-9), that it is
indeed & constant of the motion.

SAM's motion is completely determined by the pair of second order
nonlinear coupled ordinary differential equations represented by (2-9)
and (2—8).* Equation (2-8) is hereafter referred to as the radial equa—
tion, while equation (2-9) or (2-10) is known as the angular equation.

Equations (2—8) through (2-11) serve as the starting point for all

* William E. Asher, "R.U. Experienced?”, Reed College Chemistry
Thesis (1980) See Reference 47.



future analysis of SAM's dynamics.

II. Initial Conditions
SAM's motions or trajectories are uniquely determined when the ini-

tial conditions are applied to the angular and radial equations. Nota-

tion for the most general set of initial conditions is established as

follows:

i. General initial conditions

£(0) = r, ©(0) =8,

£(0) =1, 6(0) =86,.

Motions resulting from two particular types of initial conditions

will be studied in detail., First, consider those motions that start

with the system at rest. Imagine holding the swinging bob in some posi-

tion and simply letting go; then at the outset the velocity is zero.

ii. Rest initial conditions

£(0) =1, 6(0) =8,

£7(0) =0 6(0) =0.

Second, envision motion that is outwardbound from the origin; these tra—-

jectories begin at the center and are fired out radially.

iii, OQOutwardbound initial conditions
r(0) =0 6(0) = o,
£(0) = £, 6(0) =0,

These two types of initial conditions are of interest since Smiles

are examples of solutions that start from rest; Teardrops are outward-

bound.



II1, Useful Observations

This section contains a few general results that follow immediately

from the equations of motion,

The first observation is that there exists a lower bound for r. In

fact, it must be —g since nothing in the problem can give M a downward

acceleration greater than g. Formally:

THEOREM 2.1
r o) -g
Proof:
Y= —1 [0 + - €0s0 — § y _
T T+ u)[re glcos® — )l 2 81 + m 2> -g. QED

It may come as a surprise that the string is taut, and the tension

in the string is positive, even if the swinging mass is above the hor—

.
-

2

izontal.
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Fig. 2-1

M

Without the string, m and M are freely falling bodies with the same

acceleration, g. Putting the string back into the picture, it is clear

that the acceleration of m toward the pulley is less than or equal to g.
The tension is zero only when m is directly above the pulley so that the
centrifugal force, which is always outward, is zero,

A second interesting fact is that the equations of motion scale in

the radial coordinate. Given any trajectory, there exists a geometri-

cally similar trajectory obtained by either expanding or contracting r

by a fixed factor. Exactly how this scaling works is shown in the
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following theorem.

THEOREM 2.2

If {r,0} is a solution, so is {kr,0}; though the new trajectory is

traversed in a different time,

Proof:

The transformation

results in

T 1, i .
R PO
dt dt?

o _ 6. de_@

I 1 P _k;
dt k3 dt?

and leaves the radial (2-8) and the angular (2-9) equations unchanged.

QED

The gravitational constant can also be scaled by the transformation

8 = kg
- t
t =7,

k3

so one can set g = 1 without loss of generality.
Furthermore, the equations of motion are invariant under time
reversal because the potential energy is independent of time, Switching

parity of the © also results in a new solution, since L is an even func—

tion in O,
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THEOREM 2.3
If {r(t), O(t)} is a motion, then {r(-t),6(-t)} and {r(t),-0(t)}

are also possible motioms,

IV. Exact Solutions

Three closed—form solutions are known that satisfy the angular and
radial equations exactly. An obvious one is the Atwood solution. If
8(t)=0, then SAM is simply an Atwood'’s machine.

i. Atwood solution

_ _ . 1 1-p
For 6(t) =0, r(t) =r, + 1ot + 758 77 u t2,
For 6(t) = n, r(t) =1, + £t - %g t2,

The projectile solution is a bit more complicated to verify. If
p =20 (i.e. M= 0), then the swinging mass should execute projectile
motion: a parabolic path. A parabola is easy to describe in Cartesian
coordinates, but the equations of motion are iﬁ polar coordinates. So
the quickest way to check the projectile solution is first to transform
the angular and radial equations to Cartesian coordinates; second, check
that a parabola satisfies the transformed equations. The recommended

Cartesian transformation places the positive y—axis downward.

r sin®

L
]

«
[}

N
£ coso ) X
< \T

This changes the angular equation (2-10) to

dros _ o1 o—
dt[yx xyl gx, or
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Iy - yx = gx, (2-12)

while the radial equation becomes

.

ay =y oL G+ YY) = gly - a(xr + y9E]. (2-13)

B(x2 + y?)

It is now straight—forward to verify the projectile solution:

ii. Projectile solution

For p

x(t)

y(t)

0,

= Xy + X,t

= . 1
= Yo t yot t Est’.

The peanut solution was found by R. Crandall:

iii,

For p

o(t)

o(t)

The peanut

the peanut

Peanut solution

= -4,
= wt, w = éo
= d&(—4 + % coswt) .

is periodic, but unstable in the sense that trajectories near

orbit either spiral into the center or run away. In view of

the negative mass, its physical relevance is dubious. No other exact

solutions have been discovered so far.



CHAPTER III. The Motiomns

"id quod visum placet.”

"I never guess', Holmes corrected smoothly. "It is an
appalling habit, destructive to the logical faculty.”

The Seven—per—cent Solution

I. Numerical Solution

Study of SAM's dynamics begins with extensive numerical solutions
of the angular and radial equations. Details about how the computer
solves these equations are to be found in Appendix 1. The trajectories
drawn by the computer are delightful and often suggest fresh avenues of
exploration., Numerical integration reveals many types of motion, from
patterns that look random to a wide spectrum of periodic trajectories.
Later, numerical solutions serve as a precise yardstick to judge the
accuracy of different approximation schemes, Surprisingly, these com—
puter checks show that the numerical results are almost identical to the
perturbative solutions (Chapters IV and V) within their domain of appli-

cation.

I.A. Increasing M

Three typical studies are presented in this section, Each picture
frame shows the trajectory of the swinging mass after it starts from
rest on the left hand side. The origin is marked by a small cross, usu-
ally top of center in each frame., In the first set of pictures, the
masses are initially equal. The successive frames show what happens as
the nonswinging mass is increased. The increment is arbitrarily chosen

to be around one—tenth, from one frame to the next., The initial angle
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is about 90°, so the swinging bob starts out at the same level as the

pulley. The specific initial conditions are:

m=1 M=npn

r, =10 6, = 1.57 radians
£, = 0 6, =0

g =10

t: 0 to 10n

M ranges from one to ten and is indicated at the bottom of each frame.
The ticks on the boundary of each frame outline a Cartesian grid. The
range of the grid is

x-axis: —-15 to 15, y—axis: -20 to 10.
The period is 10n in all cases, so if the trajectories look simple it is
because the orbit is retracing its path; the motion is periodic. For
the first few frames, the entire orbit is not contained completely

within the grid.
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Some of the patterns are quite beautiful, and invite special names:

M Name
1.67 Smile
2.4 Sombrero

2.81 Big Loop
4.7 Whirling Dervish

7.7 Little Loop

The Smile is the simplest instance of a periodic path. The trajectories
just named, along with a few others, are all thought to be periodic.
Notice that the mass comes dangerously close to the center for M = 2.2

and others.

I.B. Periodic Trajectories

Periodic trajectories are particularly intriguing. This section
emphasizes periodic solutions. As in the previous study, M starts at 1
and is increased by small amounts. As M is increased, some of the tra-
jectories retrace their steps, so the path looks periodic. By twiddling
M, and examining the new trajectory, it is possible to home in on
periodic solutions; i.e., trajectories that look identical over many
oscillations. Many trajectories on the next two pages are presumably

periodic. The initial conditions for these pictures are:

m=1 M=y

r, = 10 6, = 1.5 radians
fo = 0 6, = 0

g = 10



Unless indicated otherwise, the grid range is the same as before,

25
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Although this study certainly does not locate all the periodic tra-
jectories within the range of masses tested, a curious patterm is
unfolding. Between M = 1 (equal masses) and M = 1,61 (Smile) there
appears to be a whole spectrum of periodic solutions, perhaps infinite
in number, since the mass difference between two periodic paths
decreases as M approaches one. These solutions are alternately sym—
metric and asymmetric about the vertical axis. For instance, M = 1.12

is symmetric, M = 1,173 is asymmetric; but both look periodic.

I.C. Smiles

The third numerical study focuses on Smiles. The last picture
shows smiles for different starting angles. The initial angle, and the
M required to obtain a Smile, are indicated on the right. Otherwise,
the initial conditions are the same as in the previous study. In par-

ticular, r, = 10 for all of them.
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II. Periodicity Condition

Smiles exhibit features which are common to other periodic trajec-
tories that start from rest. There exist similar families of Loops,
Whirling Dervishes, and other periodic paths., Each curve within the
family is characterized by its initial angular displacement, ©,. For a
given ©,, there is a particular mass ratio p which leads to a periodic

orbit of the specified family:
p = £(6,); (3-1)

this is called the periodicity formula for the family in question. This

formula can be constructed by numerical methods. The periodicity for-
mula must be independent of r, and g since by Theorem 2.2 the length and
the gravitational constant can be eliminated from the angular and radial
equations by a suitable change of scale.

For Smiles, the numerical evidence also promotes the following con—

jectures:

i. £(0) =1
ii, f(@,) is monotonically increasing on 0 to n

iii. f(n) =3

III. General Observations

Some of the more salient conclusions that are suggested by numeri-
cal studies are: First, when p < 1, r is unbounded; the solutions runm
away, like a simple Atwood’'s machine. Second, if p = 1, r reaches a
terminal velocity and © approaches zero, Third, if p > 1, then there

exists a maximum r; r is bounded above.
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One also finds that solutions which start out near periodic tra-

jectories, remain close to them, Motion near periodic orbits is
recurrent, in the sense that given any point along the trajectory, the

swinging mass will come back close to that point at some later time.

IV. Terminology
The numerical solutions motivate a simple scheme by which to clas-

sify the motions of the swinging bob.

bounded: 0 ¢ r(t) ¢ ¢
— - = ‘max

stable: r . < r(t) {r

min max

periodic: r(t + T) = r(t)

and, 6(t + t) = 6(t), for some T,

Fig. 3-1
If the bob always remains within some circle of radius Toax { =, the
motion is bounded; i.e., there exists an upper bound for r(t). If there
further exists an r . > 0; (i.e., r has a nonzero lower bound) the
motion is said to be stable. Lastly, if r(t) and 6(t) are periodic with
commensurable periods then the motion is periodic. Observe that this is

a hierarchy: periodic = stable = bounded.

V. Bounded Motion

A fundamental theorem about bounded solutions is proved in this
section. It says that SAM’s motion is bounded if and only if u > 1;
that is, r(t) is bounded only when the swinging mass is lighter than the

*
nonswinging mass. If p > 1 the existence of a maximum r follows from

* A trival exception is the simple Atwood’'s machine that starts
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conservation of energy.

THEOREM 3.1

There exists a maximum r when p > 1.
Proof:

E=(1+ p)i? + 120% + 2gr(p - cos@),
2 2gr(p - 1),

S B 2 2gr(p - 1),

This is always true. If p > 1, it follows that

r <

E -
T (3-2)

In particular, if the system is released from rest, then
E = 2gr,(p - cos6,). (3-3)

So an upper bound for r(t) is

p - cosf,

T oax & %o R (3-4)

A few lemmas are needed to prove the converse. Use brackets to

denote the time average of a quantity:

T
¢x(t)> = lim = [ x(t)at. (3-5)
T 0

Next define

T =p(g + 1), (3-6)

from rest with equal masses. This is the only equilibrium point of
the system.
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so that T is proportional to the tension in the string.

If the motion is bounded, then the average velocity and accelera-
tion of M are both zero. This observation is needed for the next two

lemmas.
LEMMA 3.1

If the motion is bounded, then <T)> = gpu

Proof:

<T> = <u(g + 1)) = ug + p<r> = gp. QED

LEMMA 3.2
If the motion is bounded, then (Tcos®> = g

Proof: Let y = r cosO, then
Y = Tcos® ~ 21 0sin® — r6 sin® - r2cosH.
From the angular equation
rOsin® = 21 ©sind - g sin3@,

Plugging this into the y equation yields

Y = Tcos® — 102 cos® + gsin3@,
whereupon, using the radial equation:
y=-T cos® + g.

For bounded solutions {y> = 0 so

{Tcos®> = g. QED
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THEOREM 3.2

If r(t) is bounded, then p ) 1,
Proof:

g = (Tcos®>  <T> = gu so0

1< p. QBED

YI. DUnbounded Motion

The remainder of this chapter will deal with unbounded solutions.
The next two chapters are devoted to periodic motion and related
bebavior.

When p ¢ 1, the computer suggests that the qualitative behavior of
the angular coordinate is similar to that of a damped harmonic oscilla-
tor. Insight into the general behavior for p { 1 is provided by the
following approximate calculation.

Consider the case of very small O, so the equations of motion can
be expanded keeping only first—order terms in 6. For motion that starts

from rest, the radial equation simplifies to
(1+p)F=(1-pg = £(t) =1, + 2at3 (3-7)

where a is the Atwood acceleration

The angular equation is
rO+ 2:r0+ 30 =0,

Next consider a large t approximation t >)> O, i.e. look at the motion a

long time after the bob is released. Assuming %It’ >> r,, so the length
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the length of the pendulum has changed much compared to its original

value, we have:

O:
n|-h

2,21 +p
6+ 5,00

The reader can verify that an exact solution to this equation is

s s A R F O (3-8)
t2 ' 2-\l4 1-yp°
If pu ¢ 17, then a is real and © crosses the vertical axis at =, Other-
wise, when L {p<1l, a is imaginary. Since this differential equation

17
is linear, both the real and imaginary parts are solutions. Using
Euler’'s celebrated identity — eie

o(t) = m‘-;‘;ln—tl

= cos® + isin® —— gives
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VII. Terminal Velocity

For p = 1 and motion starting from rest, both the numerical evi-
dence and physical intuition suggest that r(t) reaches a terminal velo-
city as 6(t) approaches zero. This terminal vglocity can be derived by
energy conservation. Consider the initial and final configurations for

equal masses:

Equal Masses

initial final
N
Fig. 3-2
Looking at Fig. 3-2, one sees that the potential energy it takes to

lift the swinging mass away from the vertical ends up in the form of

kinetic energy. The initial potential energy is
E, = mgr, (1 — cosB,).

while the final kinetic energy is

Setting Ei = Ef and solving for the velocity gives

T erminal = \Jgro(l - cos6,). (3-9)



CHAPTER IV. Smiles

”"And then their features started into smiles,
sweet as blue heavens o'er enchanted isles."”

John Keats

Smile, damn you; smilel

American saying, c¢. 1910

I. Periodicity Formula for Smiles

It is easy to discover a small—angle periodicity formula for Smiles

by studying the average tension in a simple pendulum., For small angles,

a Smiles’ trajectory is almost that of a simple pendulum, since the
string length changes only slightly over omne period. Now, the (time)
average of the tension in the string equals Mg for any bounded motion.
Setting the average tension in the simple pendulum equal to Mg leads to

the desired periodicity condition.

LILILLLLL LSS L LS LY

D
T
T

Simple Pendulum
Fig. 4-1
The tension in a simple pendulum is
T = mr62 + mg cosO,

For small angles, the simple pendulum executes simple harmomic motion:

0 = 6, cos(ut), w? =4
r
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The average tension is therefore:

(T> = mr0lw? (sin?wt)> + mg <(cos(f,coswt)>

mg {82 (sin?wt) + <cos(O,coswt)>}.

The argument of cos(®,coswt) is small; keeping terms of order 6: in the
Taylor expansion gives

ez
mg{ez(sin’wt> +1 - 3%<cos’wt>}
ez
mg(1 + %),

T>

since {(sin?wt> = {cos?wt)> = ;. Setting (T) = Mg yields the periodicity

formula

1
w=1+7767, (4-1)

The small-angle approximation was used to calculate the integral of
cos(Oocoswt). In fact, this is not necessary since the solutiomn is

exactly a Bessel function of order O:

o N Ly

T
<cos(B,coswt)> = = [cos(@,coswt) dt = J (8,).
0

Using this Bessel function leads to the periodicity formula,
92
=3 + J,(8,) (4-2)

*
which is consistent with (4-1) for small angles.
The periodicity formula can be constructed to an arbitrary degree

of accuracy by the computer. The results are presented in the following

* Keeping only the first two terms in the Taylor expansionm,

=1 -1g2 . L
To(8,) =1 -6} + 2065 - .. .
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table; this is the data used in section I,C, Chapter III.
Smile Solutions

Angle Mass ratio Minimum r Maximum r Angular Frequency

0.1 1.002502 9.981274 10.000000 1.000668
0.2 1.010027 9.925389 10.000000 1.002373
0.3 1.022637 9.833211 10.000000 1.004819
0.4 1.040427 9.706154 10.000000 1.008510
0.5 1.063523 9.546141 9.999996 1.013225§
0.6 1.092068 9.355539 9.999998 1.018740
0.7 1.126214 9.137073 10.000002 1.024953
0.8 1.166103 8.893732 10.000000 1.031759
0.9 1.211845 8.628649 9.999999 1.039179
1.0 1,263503 8.344969 10.000000 1.046841
1.1 1.321066 8.045718 9.999999 1.054616
1.2 1.3844306 7.733667 9.999997 1.062439
1.3 1.453404 7.411225 9.999999 1.070101
1.4 1.527647 7.080346 9.999999 1.077381
1.5 1.606727 6.742481 10.000000 1.084046
1.6 1.690092 6.398557 10.000000 1,090217
1.7 1.777096 6.048997 9.999998 1.095729
1.8 1.867017 5.693772 10.000000 1.100487
1.9 1.959080 5.332466 9.999998 1.104398
2.0 2.052481 4.964356 10.000000 1.107517
2.1 2.146415 4.588506 9.999999 1.109980
2.2 2.240097 4.203844 9.999999 1.111647
2.3 2.332783 3.809247 9.999998 1.112717
2.4 2.423785 3.403621 10.000000 1.113281
2.5 2.512484 2.985976 9.999998 1.113394
2.6 2.598347 2.555506 10.000000 1.113149
2.7 2.680929 2.111669 10.000000 1.112717
2.8 2.759885 1.654286 9.999999 1.112116
2.9 2.834975 1.183666 10.000000 1.111516
3.0 2.906076 0.700766 10.000000 1,111028
3.1 2.973206 0.207481 10.000000 1.110750

The periodicity condition is read from the angle and mass ratio columnms.
The minimal value of r occurs at 6(t) = 0, and the maximum value at

6(t) = 6,. The computer decides if a given path is a Smile by checking
to see that the maximum values of the radial coordinate are identical
over many oscillations. The degree to which the computer maintains con—
stant amplitude motion is indicated by the slight variations in the max-
imum r column. Evidently, the solutions are good to six significant

digits.
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A comparison of the Smile periodicity formulas is shown in the next
table. As expected there is good agreement for small angles,
9, ¢ 0.5 radians. More surprisingly, the theoretical formulas remain
quite good even for relatively large angles. Notice that the Bessel
function formula is distinctly better, up to angles of 1.5 radians;

above this, neither formula is terribly good, though (4-1) is somewhat

better.

Comparison of Smile Periodicity Formulas

Angle Numerical 1+ %} Jo(6,) + %l
0.1 1.002502 1.002500 1.002502
0.2 1.010027 1.010000 1.010025
0.3 1.022637 1.022500 1.022626
0.4 1.040427 1.040000 1.040398
0.5 1.063523 1.062500 1.063470
0.6 1.092068 1.090000 1.092005
0.7 1.126214 1.122500 1.126201
0.8 1.166103 1.160000 1.166287
0.9 1.211845 1.202500 1.212524
1.0 1.263503 1.250000 1.265198
1.1 1.321066 1.302500 1.324622
1.2 1.384436 1.360000 1.391133
1.3 1.453404 1.422500 1.465086
1.4 1.527647 1.490000 1.546855
1.5 1.606727 1.562500 1.636828
1.6 1.690092 1.640000 1.735402
1.7 1.777096 1.722500 1.842985
1.8 1.867017 1.810000 1.959986
1.9 1.959080 1.902500 2.086819
2.0 2.052481 2.000000 2,223891
2.1 2.146415 2.102500 2.371607
2.2 2.,240097 2.210000 2.530362
2.3 2.332783 2.322500 2.700540
2.4 2.423785 2.440000 2.882508
2.5 2.512484 2.562500 3.076616
2.6 2.598347 2.690000 3.283195
2.7 2.680929 2.822500 3.502551
2.8 2,759885 2.960000 3.734964
2.9 2.834975 3.102500 3.980688
3.0 2.906076 3.250000 4.239948
3.1 2.973206 3.402500 4.512936

2

2
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II. Almost Simple Pendulum

The approximate form of the Smile trajectories can be obtained by a
perturbation scheme, involving expansion in powers of ©,. The key idea
is to exchange increasingly higher order solutions between the radial
and angular equations., A "zeroth—order” solution of the radial equation
is plugged into the angular equation so that, in this order, the angular
equation can be solved exactly. This solution is plugged back into the
radial equation, yielding a "first order’” solution. In principle, this
boot—strapping technique can be continued ad infinitum, resulting in
solutions to any order of accuracy.

A Smile trajectory is close to the path of a pendulum for small

angles. So to solve SAM by the perturbation method assume
6 <C1and r = ry{1 + e(t)} with e < 1. (4-3)
The equations of motion are:

(1 + p)f = r62 + g(cos® — p)

X ST S ;
dt(r 0) = —grsin®

The order of the approximation is defined by the power of 0,. It will
turn out that e is of order 9:. To first-order (i.e., keeping terms of

order 0, and less) r = r Plugging this into the angular equation

I3

gives simple harmonic oscillation as expected.

First—order Smile:

r =1, (4-4)

0 = 8,cos(ut), w2 =2 (4-5)

Expanding the radial equation to second order in © gives the



43

second-order equation:

. . Y
(1 + wr = ro3 +g(1-"2——p).

Applying (4-3) and (4-5) gives

(1 + p)rge = r, (1 + e)G:w’sinzwt + g(1 - p) - gezcos’wt.

The term containing e on the right is of fourth-order in O, and there-

fore dropped. Solving for & yields

2

. 2 e
L 1 -4+ 21(1 - 3cos(2ut)]

ET a1+
The solution to this differential equation is ¢ = A + Bt + f, where f is
a solution to the inhomogeneous equation:

f(t) = Ct2 + Dcos?2{wt).

Differentiating f and solving for C and D yields

e’ 3 o>
p o+ ]?]tz + = —L2 55 (20t) .

e(t) = A+ Bt + 6 1+

—wr
2(1 + u)[l

A and B are determined by the initial conditions &(0) = €(0) = 0, which

imply
2 2
w? 9, 3 0, ,
= ————— — + — 2 e o — - 2 .
£ 2(1 + u)[l m 2 1t g8 (1+ “)sxn (wt)

This result holds for short times after release, provided 0, << 1.
After that the t2 builds up, violating the condition & ¢({ 1. The solu-

tion holds for all times if the radius never changes much. This means

3 3
(1 - ) + i% =0 -—-i,e, p=1+ ]% —— reproducing the small angle
63
periodicity condition, If u =1 + ]F and 6, << 1 then
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= -3_.2-1,
= r,(1 - 9, sin ot).

16

To finish the program and get a complete Smile, put the first—-order
radial solution back into the angular equation and solve for ©(t) in

third-order:
4 A1 = o3
dt[r:(l + 2e + €2)0] = —gr, (1 + e)[6 -~ 6 1.

Keeping only the third order terms (6 is of order ©,, ¢ is of order 9:)

gives
A. A1 = —m2 - gi
dt[(1 + 2£)6] w28(l + ¢ 6 ).

In the parentheses on the right it suffices to set 6 = eocos(wt):

2
o3 3 eg . 1 .
+ — — -— - 2 — = 2
1 € 6 1 8 (1 u)SID wt 6 eacos ot

2

1 - 5% {17 - cos(2wt}

2
when 1 + p is replaced by 2 + ]% = 2, to this order. The next step is
to solve

2

d 5] = — _ % -
dt[(1 + 2¢)0] = -w?6[1 96{17 cos(2wt)}].
Try a solution of the form
a(t) = 0, (cos(uwt) + &(t)}

where 8(t) is of order 8, or smaller, and =0 +0k, A << 1. A rather

long calculation leads to the equation

.e 1

-2 ot
8 + w2d = w’G:{—21cos(wt) + 53cos(3ut)}. — (W~ W >c°§w

Thus w? - w3 = 1 w20%, Let © =1 + y), then y = L 6%, The conclu-
64 o 64 "o
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sion is

- _ d_ a3
(l)—w[l +120 00]0

w P - I

S + wid = 192 © 0, cos(3ut).

The particular solution to the inhomogeneous equation is

3
1536

5 = 02 cos(3ut).

Therefore, the general solutiom is

53
1536

5(t) = Acos{wt) + Bsin(wt) - 82 cos(3uwt).

Apply the initial conditions 8(0) = 5(0) = O to get the desired result.

At last, the Smile to order ©} is
Third-order Smile:

() =, (1 - = 62 sin?(at)} (4-6)

53
1536

- _ l.&. 1 a2 -
™ to(l + 128 0;) (4-8)

This chapter concludes with a comparison between a Smile given by

e(t) = 8, cos(wt) + 02 {cos(wt) - cos(3ut)} (4-7)

numerical solution and the perturbation method. The trajectories of
both are illustrated on the next page. The dotted line shows the per—
turbative path —— equations (4-6) through (4-8) ~- and the solid line
indicates the numerical (true) trajectory. The starting angle in radi-
ans is indicated below each frame. The pulley is in the dead center.

For 6, = 0.5 radians, the solutions look identical. As O, increases,
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the difference between the two solutions becomes evident. Of course,
for 6, > 1.0 radians, there is no reason to expect that the perturbative

solution will fit the true path; despite this, the agreement is not bad.



_3_.5532

PG HopaS-paryy e

T T T T T T T T
P oy os: - oo -
- R £ R - - - b -+ -
- ] 1 T 1T il
1 i .. i | 1 i 1 i L

T T T T T ~ T
I i > 1 L ]
- + - - + - o + -
- - - -— - -y
1 1 ] ) 1 ] 1 | 1




CHAPTER V. Teardrops

"He calleth to me out of Seir,
Watchman, what of the night?
The watchman said, the morning cometh,
and also the night;
if ye enquire, enquire ye;
return, come."

Isaiah

"Hinc illae lacrymae.”

Horace

I. Almost Atwood’'s Solutioms

In Chapter IV, Smiles were obtained as perturbations from the sim—
ple pendulum. This chapter analyses Teardrops as perturbations on the
Atwood's machine. Unlike Smiles, the Atwood's solutions do not start
from rest, but are outwardbound from the pulley.

Consider the case in which mass m is fired out radially from the
origin, at an angle ©,, If 6, = 0, then the swinging mass is fired
straight down, and if p > 1, it will return to the pulley in a time
specified by the Atwood solution. Now, if 6, << 1, them one can solve
for motion close to an Atwood’'s machine by the perturbation method
illustrated in the Smile solutions.

The solution to the simple Atwood’'s machine with initial downward

velocity v is
9 =0; po>1,
(1+Wr=g(1-p) =r=vt - %at’
8= v18

The solution pertains for
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2v,

a »

0<tg

at the latter time it is back at the pulley.
Consider a small deviation from the simple Atwood’s machine with ©
{¢ 1. To first—order in O, the radial equation is still unchanged.

However, the angular equation reads:

Jl(r

28) = — ; = -
at 0) gr sin® gro.

Differentiating yields

r®+ 210 = -g 0.

Plugging in the Atwood solution results in a first—order angular equa-—

tion
(vt—%atz)'e'+ 2(v - at)6 + g0 =0 (5-1)

The next step is to try a power—series solution to (5-1).

(-]
Let © = 3 b_t™, then
“ n
n=0
1 : 2 . 1. <
(vt-=at?) T b_n(n-1) t* “+2(v-at) I b nt" +g J b t?=0
2 ~. n P PR
n=1 n=0 n=0

The standard trick at this point is to renmame the index of summatiomn in

each sum so that the powers of t are all the same; this yields
c 1
n
+1) -% -1) + +1) - + =0.
nEo{v‘nm_ln(n 1) 2abnn(n 1) 2vbn+1(n 1) 2abnn gbn}t 0

Now it is possible to solve for bn+1 since the uniqueness of the power—

series expansion implies that J{-—-}t" = 0 = {-—} = 0. Thus:

vbn+1{n(n + 1) + 2(n + 1)} + bn[g - 2an - %an(n - 1)1 =0.
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Solving for bn+1 gives

—= n=20,1,2,3,... (5-2)

n+1 = Pnfv(a + 1) (a + 2))’

a
~n(n +3) - g
N ]

Suppose the polynomial, whose coefficients are specified by (5-2), ter—
minates, Then it will turn out that these are precisely the solutions
that return to the pulley. Strictly speaking, these solutions are not
periodic, since they complete only one cycle. But it is convenient to
say one '"period’” is the time it takes the bob to return to the pulley.

Termination of the series implies
=0 = ZN(N+3) =g

Plugging in the Atwood acceleration ﬁ—i}%'g, and expressing u in terms

of N gives

u=LN+1UN+H

e raNC 2 N=1L.2.3,... (5-3)

the so-called magic mass formula. Notice that as N approaches =, the
magic mass formula goes to one. The masses are called 'magic’ because
they return to the pulley. The magic mass formula gives an infinite
spectrum of rational mass ratios that always return to the center.

The first few magic masses are listed in the table below.

Magic masses

N n Trajectory Name
1 3 Teardrop

2 3/2 Comma

3 5/4 Figure-8

4 15/13

5 21/19

6 14/13

7 18/17
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The trajectories resulting from the first twelve magic masses are
shown on the next page. The numerical solutions for the mass ratios are
indicated at the bottom of each frame. The swinging bob is fired out at
6, = 0.5 radians from the top of each frame. The specific initial con-

ditions are:

H
"
(=]

.
(=]
ot
<D
[}

0.5 radians

3, =v=10 &, =0
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The pictures show the trajectory of the bob as it goes away from, and
then winds back to the origin. The pattern is similar to that seem in
section I.B, Chapter III. As p approaches one, the solutions are alter—
natively symmetric and asymmetric about the vertical axis. Like the
Smile, the Teardrop crosses the vertical (6 = 0) axis once in one
period; the Comma crosses twice, the Figure—8 three times, and so on.
This is the same pattern exhibited by the periodic solutions that began
from rest in Chapter III.

Of course, the magic mass formula is a first—order result; it is
only valid for small angles. There must be a periodicity formula valid
for any angle for each type of trajectory that returns to the pulley.
These periodicity formulas consist of the particular magic mass plus an
additional mass term which is a function of ©,. Periodicity formulas
constructed by numerical methods are given in the next table. The
periodicity formula for Teardrops is striking; evidently some masses are

more magic than others!



Atwood Periodicity Conditions

Angle Teardrop Comma Figure-8 N =4

1.500 1.250 1.154
.501 1.251 1.154
.502 1.252 1.155
.505 1.254 1.155
.507 1,255 1.152
511 1,258 1,157
.515 1.260 1.157
.520 1.263 1.158
.525 1.266 1.161
.532 1.270 1.163
.539 1.275 1.166
.548 1.280 1.168
.558 1.286 1.171

.570 1.293 1.171

.583 1.301 1.179

1.310 1.182

.616 1.321 1.188

. .637 1.334 1.194
661 1.349 1.201

.690 1.367 1.209
.125 1.390 1,218
.767 1.418 1,229
.819 1.453 1.250
.883 1.500 1.259
.071 1.564 1.279
.208 1.656 1.305
.381 1.749 1.338
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II. Teardrops: p =3

Solutions that are outwardbound scale inm v, the initial radial
velocity; i.e., the shape of the trajectory is the same no matter how
quickly the bob is fired out. Therefore, Teardrops have the amazing
property that if p = 3, then for any starting angle and velocity, the
swinging mass always follows a symmetrical "teardrop trajectory” and
returns to the pulley. Furthermore, the numerical studies indicate that

the period for any Teardrop is the same as that of an Atwood’s machine,

2v _ 2v
a g -1

:

T =

= ¥ (5-4)
g

It is easy to obtain a first—order approximation to the Teardrop trajec—
tory by applying the initial conditions to the terminating polynomial
given in the power—series solution, The first—order Teardrop can then
be used to obtain the second-order correction. A ladder of approximate
solutions, which converge to the true scolution, is built up in this way.
The actual computation is similar to the method used in obtaining the
Smile solutions.

The calculations are very involved. In this section an outline of
the computation is given along with the conclusion.

The zeroth-order Teardrop is simply an Atwood'’s machine.

Zeroth~order Teardrop:

-
]
<
o+
{
|

L
To first—order,©, the radial equation is unchanged; however, the angular

equation is determined by applying the initial conditions to the power—

series whose coefficients are given by equation (5-2).
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First-order Teardrop: p = 3

_ _ &t,,
61 =6, (1 2v)'

— _ &t
r, = vt (1 4v)'

The first—order solution is now used to find a third-order solu-
tion., This is done in two steps:
(1) Plug the first—order Teardrop into the radial equation,
and expand to second-order in 6,, Do not assume p = 3;

rather, set

p=3+p62,

Obtain a solution of the form

r,(t) = r (t) + 65(77).

Demand r(0) = 0; r(0) = v,

(2) Put r_(t) into the angular equation, and expand to
third-order in 90. Obtain solution in the form

8, =6, + 6, (A+ Bt + Ct? +Dt?),

Demand 6(0) = © so A = 0, and hence

0

6, =6

3 + 683t (B+ Ct + Dt2),

1

Find A, B, C, D, and B.
Conclusion: Put this value of B into the expression for r_, .
You now have r(t), O6(t), and p for a teardrop, correct to
third-order in 6,,
Anyone daring enough to carry out this calculation will discover
that there exists a dimensionless set of variables that is easy to work

with. These variables are defined in the #+h{rd —order Teardrop solu—-

tion.
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Third-order Teardrop: p = 3

Let z = it and
4v
W=Z(1_z):

w' =1- 22

then the third—order Teardrop is

3

3 o

r(t) = i‘g—"w[l - ]¥W]'
61

8(t) = 6, w' [1 + J*wl.

The third—order Teardrop is next used to calculate a fifth—-order
Teardrop. Needless to say, the computation is quite long. The solu-
tion, though, is relatively simple and there is still no correction to Ty
in this order.

Fifth-order Teardrop: p = 3

= At -
z =4y (5-5)
w=2(1-2z) (5-6)
w =1-22z2 (5-7)
r(t) =i!1w[1-i‘6:w—%6:w(w- %)] (5-8)
B(t) = 0, w' [1 + 303w + Sofw(w - )], (5-9)

The next page shows a comparison between the numerical solutions
and the fifth—order Teardrops. The initial starting angle is indicated
at the bottom of each frame in radians. As you can see, for large
angles a Teardrop becomes a Heart. The agreement is quite good even for

large angles.
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III. Commas: p ==
The periodicity formulas constructed for the first four Atwood's
type solutions are almost constant until €, = 1.5 radians. This sug-—
gests that the first correction term to any of the magic masses is
larger than 62, During the investigation of this conjecture, the Comma
trajectories was approximated by the method outlined in the previous
section. It is found that even for Commas, there is no correction of p

of order ©3. The third~order Comma solution is

Third-order Comma: p =

2
e(t) =6, (1 - 5w (5-10)
r(t) = -1—953“1 - 02w (1 - 3w] (5-11)
w=12(1- 2z) (5-12)
_ &t -
2= Jov (5-13)

A comparison between the perturbative and numerical solutions is given

on the next page.
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CHAPTER VI. Smiles Exist

Q: How many mathematicians does it take to screw in a light
bulb ?

A: n € Z+

"There is always an easy solution to every human problem —
neat, plausible and wrong.”

H.L. Mencken

I. Motivation

The argument presented here, to show the existence of periodic

motions, is based on the following simple observation.

- - =y

. 1
M7 Tr <O '\_
- '
""1':0:/ Fig. 6-1
'
A<t 120
Trajectories for large and small p; iT denotes the radial
velocity at 6(T) = 0.
For motion that begins from rest, the radial velocity when the bob
crosses the vertical axis, is positive when p is very small. On the
other hand, if p is very large then the radial velocity is negative as
the bob crosses the vertical axis (cf. Fig. 6-1)., As p varies continu-
ously between the two extremes, there must occur an intermediate u such
that the resulting trajectory crosses the vertical axis with zero radial

velocity.

But if the bob begins on the other side of the vertical axis, with
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. i

I
/ - 90 ) 90
/

- ‘/\/

Fig. 6-2

the same initial conditions, then a similar trajectory will result.
Gluing these two solutions together gives a periodic trajectory. Hence,
any motion that starts from rest and crosses the vertical axis with zero
radial velocity is periodic. QED

In the qualitative argument just presented, four plausible state-—
ments are made which will be proved more rigorously (i.e. directly from
the equations of motion) in the next section: to wit,

(a) The trajectory does cross 6 = 0,

(b) For large enough u it crosses with r < 0,

(¢c) For small enough p it crosses with r > 0,

(d) If it crosses with r = 0, the trajectory is periodic.
I1I. Proof

Throughout this proof, set g =1 and ry = 1. This involves no loss
of generality as mentioned in Chapter II. Further, consider only
motions that start from rest with 0 ¢ 6, < %.

Define T as the time required for the first zero crossing; i.e.,
the first time 6(t) = 0, 1In general, T is a function of ©, and p. For
Smiles, T is one quarter of the period.

T(6,, u) is assumed to be continuous for the motions considered.
Given that T(Go,u) is continuous, it will now be argued that there

exist periodic motions that are symmetric about the vertical axis.
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LEMMA 6.1

6(t) is monotonically decreasing, for 0 < t < T.

Proof:

JL(r’é)

1 T
-rsin® = 0 = -lfrsinedt.
dt rzO

Now, rsin@ > 0 for 0 ¢ ©® ( 7 so

e(t) < 0
until ©(t) = 0, since 6(0) = 0. QED

A useful equality is given by the next Lemma.

LEMMA 6.2

1y 1 :
= + + 2
- L +1r [1 cosO r62]

Proof: Because y = rcos®, it follows that

Y = Tcos® - 2:0sin® - r@sin® — 162 coso.

Plugging in the radial and angular equations, it is possible (see Lemma

3.2) to rewrite Y as:

1 - ;_%_I cosO[1 + cos® + r63].

Therefore,

—
1—'§=u + 1 cos®[1 + cos® + rdz2]
y rcosO

= =1 % [1 + cose + ré3]. GED
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THEOREM 6.1

There exists a T such that O6(T) = 0.

Proof: Equation (2-12) — the angular equation in Cartesian coordinates

— reads:

o _ (1 - g = —U 1

- p+ 1 ; [1 + cos® + 162] ¢ O

until 6(t) = 0, Since x, > 0 and io = 0, there exists a T such that

x{(T) = 0, and hence 6(T) = 0.

THEOREM 6.2
Let ¥ = —03(t) x with x(0) = x_; x(0) = 0. Assume w3(t) ) w3 > 0;

w, is a constant. Then the time T required to reach x(T) = 0 satisfies:

|
TS 20,
*
Proof: Until x = 0, examine
_d_(i)= E.:xl_"_ii ( (0 + .i_i) then
dtix x2 - o x* 7’
_d_(é)
dt x‘ < —10
2 x2
wo ¥ 33 7

Integration yields

£- ¢ ~tan(u,t),
u)ox -

4 4
dtllog(x)] < dt[log(cos(mot)].

* Proof by Ray Mayer.
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Integration again results in

longil € loglcos(awyt)], or
[ ]

x(t) ¢ x,cos(tw,). QED

What this says is that an oscillator whose "frequency” w(t) is a func-—

tion of time, but always less than some constant w,, will stay under the

curve for the SHO with frequency w,:

A

%

JpJP‘SF*O with (reguency Wo

o .
Yoscillator with t Fig. 6-3
w&E)Y Y weo

Consequently, it must hit the t axis earlier than the SHO, which crosses

at T = llﬂ.
4w

QED

REMARK 6.1
In this particular case, a lower bound for the ""frequency”, w, can
be obtained from equation (2-12),

x = x = -w?(t)x where w3(t) = l—§-1

So a lower bound, w:, is

W= —E— 1 [1 4+ cos0,] < wi(t).
0 u+1rmax o =

In theorem 3.1, it is shown that T oax is bounded by

p - cosO
r ( ———*
max = p-1
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when p > 1 and the motion starts from rest. Combining this result with
theorem 6.2 results in an upper bound on the time, Tmax’ it takes for

the first zero crossing:

1 _x y +1 W~ cosQ
wo 2 \|p(p-1) 1+ cosB,’

T

Y

for p > 1, This bound is essential for the next theorem.

THEOREM 6.3

For some p > 1, there is a trajectory such that 1(T) < 0.

Proof: If ¥ ¢ 0 on 0 ¢ t ¢ T then z(T) < 0. To show T is always nega—
tive on this interval, a lower and upper bound is needed for r. A lower

bound is obtained from considering the minimal radial acceleration:

. 1H — cosO
3 - - E—2
(r€% + cos® - p) = r > 1 T t

r=

1+ p

Again, the upper bound for r given by Theorem 3.1 for pu > 1 will be suf-
ficient,

The condition r ¢ 0 is equivalent to:
o2 + cosO, < u.

An upper bound for r62 can be obtained from the angular equation,

T

9 = 5[ frsineani? ¢ - (r2 sinte, 12
T - 3 max °
0 r .
min
where

) _k- cos6!

max -1

T2 I A A "max

max 4 p 1 +';;;9°
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- ¢cos©
r . =1- 1R-°22"% T2
min 2 p+1 max

For the case p =2, and ©, = 0.1 radians, the left hand side of the ine-

quality is about 1.6, which is less than 2. QED

THEOREM 6.4

For some p ¢ 1, there is a trajectory such that z(T) 2 0.

1 2

Proof: Let 6, ¢ 7 and u = 2 then

-

(1 + p)T = 62 + cos® - 4 >0

until @ = 0. Therefore, T > 0 on the entire interval so r(t) > 0 at
6(T) = 0. QED

The hypothesis of theorem 6.5 follows from theorems 6.3 and 6.4,
and the assumption of continuity. It shows how the solutions are to be

'glued’ together.

THEOREM 6.5
If £(0) = 6(0) = 0, and for some T > 0, ©(T) = #(T) = 0, then the

motion {r(t),6(t)} is periodic.

Proof: Let n = [t/T], greatest integer in t/T. Let v =t — nT. By

hypothesis, r and 6 are defined on (0,T). Define:

(<) ; n=0 (mod 4)
_ r(T-%) ; n=1 (mod 4)
r(t) = r(t) ; n =2 (mod 4)
r(T-<) ; n=3 (mod 4)
o(v) ; n=0 (mod 4)
_ -0(T-%) ; n=1 (mod 4)
6(t) =4 6(x) ; n=2 (mod 4)
o(T - t) ; =3 (mod 4)
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Note that r and © are now defined for all t. Furthermore, by invariance

of motion under,

0 —> +0( +t)

r —> r( +t)

r, © and r, 6 are continuous. ;, © are solutions for all t > 0 and are

clearly periodic. QED

III. Poincaré’s Geometric Theorem

The argument just presented gives one little insight into the
structure of the periodic motions. For instance, it fails to make use
of the observation that motion starting from rest is periodic if and
only if there exist two rest points (at some t > 0, r = 8 =0).

It is possible that an alternative proof is furnished by
"Poincaré's last geometric theorem”, which applies specifically to prob-
lems with two degrees of freedom, This theorem reduces the existence of
periodic motions to a study of the fixed points of a "surface of sec-
tion"”, in particular the fixed points of the mapping of the annulus (a
typical surface of section) to itself. A modern expositionlof this

theorem is found in Appendix 9 of V.I, Arnold’'s Mathematical Methods of

Classical Mechanics. The proof depends upon the construction of a two-
dimensional "surface of section’ which is described in Appendix 7.‘

This theorem has only been applied to a few concrete dynamical sys—
tems (e.g. the restricted three body problem). So a proof along these

lines would be of substantial mathematical and physical interest.

* V.I. Arnold, Mathematical Methods of Classical Mechanics
(Springer—Verlag, New York 1978).



CHAPTER VII. Future Research

"there is nothing more delightful then discovering truths
for one's self”.

H.A. Roland

"a time to weep and a time to laugh’.

Ecclesiastes, ¢. 200 B.C.

I. Dynamical Systems Theory

The original aim of this study was to apply the methods and
theorems of dynamical systems theory to a simple physical problem,
Dynamical systems theory had its origins in the problems of celestial
mechanics, but in modern times it has blossomed into an independent
mathematical discipline.

I was encouraged to undertake such a program by the early success
of G. D. Birkhoff in analyzing a general potential system with two
degrees of freedom. I was particularly struck by the similarity
between the diversity of motions indicated by the numerical studies of
SAM and the conclusion reached by G. D. Birkhoff in his paper ""Surface

*
transformations and their dynamical applications’’:

* George David Birkhoff, Collected Mathematical Papers Vol. II
(New York: Dover, 1950) p. 119,
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"The varying degree of definiteness of the results above obtained
for dynamical systems is striking. The catalogue of types of motion ac-
cording to their degree of simplicity appears to run as follows: ordi-
nary periodic motions, biperiodic motions representable analytically by
convergent trigonometric series in two arguments, triperiodic motions
representable by three arguments; motions asymptotic to periodic motions
of the hyperbolic type, motions asymptotic to periodic motions of ellip-
tic type and of the other types just referred to; recurrent motions of
the biperiodic or triperiodic type (not representable by convergent tri-
gonometric series); recurrent motions of discontinuous type; motions
asymptotic to recurrent motions of these new types (or to sets of iso-
morphic recurrent motions); special motions (i.e. not passing near all
phases for both lim t = +» and lim t = -») not of above types; general
motions, '

The degree of definiteness attained has varied with the analytic
instruments at hand, and will probably be found to correspond to the na-
ture of the case, at least unless entirely new analytic instruments are
discovered.

The remarkable diversity and complexity of structure possible in
dynamical systems with two degrees of freedom is likely to stand per—
manently in the way of approach to any definitive form for the theory of
such systems. As has appeared above, many of the most vital questions
are still without an answer. Progress with these questions and progress
with the theory of the comservative transformations T which we have stu—
died will go hand in hand.”

Of course, many advances have been made since Birkhoff'’s time, in
particular, '"the stability of positions of equilibrium and periodic
solutions of conservative systems with two degrees of freedom has been

*

proved in the so—called elliptic case.” No doubt, the applications of
such results would provide insight into both SAM, and general problems

arising in the theory of dynamical systems with two degrees of freedom.

II. Orbit Egquation
A differential orbit equation is obtained by eliminating time from
the equations of motion and expressing r in terms of ©. It is listed

here as a reference for future research, If

d

£ —d;— , (&£ 0)

Dejre

+ V.I. Arnold, Russ. Math. Surv. 18, 85 (1963).
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then the elimination of 62 by means of the energy equation leads to the

orbit equation

Voo X, 2’ cos® — u , rsin@ ,, (1 + wir'? + r2 1
1+ t T L 1+ * r T 1 2 ][E + r(cos® - u)]

III1. Exercise

A lovely solution is obtained by setting g = 0 in the equations of

motion.

Problem 7.1

When the swinging mass 'whips' around the pulley, g can be
ignored in the equations of motion so set g = 0 in the angular and
radial equations, Develop an differential orbit equation by elim—
inating t, i.e. express r in terms of ©., Solve this second order
ODE. What is special about p = 3 in the solution? Assuming that
the periodicity formula is monotonically increasing, prove for
Teardrops that f(8,) = 3 for any 0, . What is the relation
between Teardrops and Smiles, based on this solution, Is there a
continuous transformation from the Smiles to the Teardrops?



APPENDIX 1: Numerical Methods

*
All numerical intergations are accomplished with Ode, a research

tool of remarkable utility. A typical Ode program looks like:

# SAM: simulation of a Swinging Atwood’'s Machine

# G is the gravitational constant

G =10

# m is the swinging mass, M is the nonswinging mass
m=1

M=23

# initial conditions:

# a is starting angle in radians

# adot is initial angular velocity

# r is the starting length of the string
# rdot is the initial radial velocity

a

= 2*PI
adot = 0
T = 0,01
rdot = 10

# the angular equation

a' = adot

adot’' = —G/r * (2%rdot + sin(a))
# the radial equation

r'! = rdot

rdot’ = 1/(m+M) * (m*r*adot 2 + m*G*¥cos(a) - M*G)
# the print statement
print a, r
A variable step size Runge—-Kutta—Fehlberg (RKF) algorithm of order
five is employed in all solutions, The maximal relative single step
error never exceeded le—~8 in any of the data listed; the relative single

step error is held below le—14 during the construction of some of the

For a complete discussion of the numerical and linguistic aspects
of Ode see: Nick Tufillaro and Graham A. Ross, Ode User’'s Manual,
Reed College Academic Computer Center, 1981, An on-line version
of the manual is available in /usr/doc. To get a copy say 'run
ode’.
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periodicity formulas,

The numerical construction of the periodicity formulas is essen—
tially a boundary value problem. They are constructed with the ’'shoot-
ing method’; a simple bisection algorithm is used to home in on the
desired mass ratio., The current version of Ode is not designed to han-
dle a boundary value problem since it lacks decision statements. In
order to overcome this short fall, Ode is embedded within the C program—
ming language so that, as far as the parent program is concerned, Ode
simply looks like a subroutine which generates the trajectories. This
is accomplished by opening pipes to and from Ode, so that the input and
output to Ode are controlled by a parent C program. Quite novel pro—
grams were also developed which could automatically seek out and home in
on periodic solutions in any specified mass range, but because of float-
ing point hardware problems these investigations were never completed.

The total energy is monitored during the entire numerical solution
as a check on the numerical method. The energy is found to vary by less
than one percent even over hundreds of oscillations,

At last report, these programs are located somewhere near

/u/s/tufil/the/prg.



