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Abstract

While much progress has been made in computing the #ow "eld in stirred tanks, the #ow "eld alone does not really give any direct
information about a very important characteristic of the design, namely the mixing time. E$cient and accurate computational tools
are needed to compute mixing time and to identify isolated mixing regions. In this paper we attempt to address both of these needs by
developing a discrete-time model of the #ow in a stirred tank based on a numerical approximation of the PoincareH map. We start by
computing the 3D #ow "eld. Next we integrate the advection equation for more than 104 passive particles through one period of the
#ow. A mapping is de"ned between each particles' initial and "nal radial and axial coordinates, and the elapsed time for each particle
trajectory. The time evolution for tracer particles can then be continued for arbitrarily long times by iterating the map. This mapping
procedure is demonstrated on four di!erent impeller stirred tank con"gurations. It is shown that the error in the mapping procedure
can be made to be less than the error in the time integration scheme at a signi"cantly reduced computational e!ort. Furthermore, as
a quantitative aid in evaluating the mixing e$ciency, we compute a mixing time which is de"ned as the time needed for a particle to
travel a prescribed distance from its starting location. ( 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Stirred tank reactors (STRs) are often used for con-
ducting polymerization reactions in industry. Because of
the high viscosity of polymer solutions, it is often impos-
sible to operate the mixer in the turbulent regime.
Molecular weight distribution and polymer structure
and properties are often adversely a!ected by incomplete
mixing. A good reactor design must exhibit both good
macromixing as well as good micromixing. In laminar
STR #ows the absence of turbulent di!usion restricts
transport across streamlines to the relatively slow pro-
cess of molecular di!usion. The rate of molecular di!u-
sion in highly viscous #uids is exceedingly slow. Thus
transport by di!usion is only important over very small
length scales or extremely long time scales. Even in non-
viscous solutions such as water the mixing time in the

laminar #ow regime may be as much as 100 times longer
than mixing times in fully turbulent #ow (Norwood
& Metzner, 1960). Therefore fast large-scale blending, or
macromixing, is needed in order to reduce segregation to
very small length scales, beyond which di!usion can take
care of the rest.

Large-scale industrial STRs are often built with
height-to-diameter ratios greater than one to avoid ex-
cessive power dissipation. Usually such tanks are "tted
with multiple impellers on a single shaft in order to
improve mixing. Although the mixing in the immediate
vicinity of each impeller may be very fast, there is often
only very slow transport between adjacent, well-mixed
zones (Oldshue, 1989; Whitton, 1993; Boudou, Xuereb
& Bertrand, 1997). Most of the #ow between adjacent
zones travels in a thin "lm along the shaft and along the
walls of the tank. Avoiding this sort of partial segregation
between adjacent zones is important in the design of
tanks with multiple impellers.

In the past decade, much progress has been made
in computing the #ow "eld of STRs, especially in
the laminar #ow regime, using Computational Fluid
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Dynamics (CFD). Detailed calculations for the laminar
#ow in STRs have been performed by Harvey and Rogers
(1996) and Harvey, Lee and Rogers (1995). These calcu-
lations take into account the impeller geometry and
require no experimentally obtained data for `impeller
boundary conditionsa. Thus, #ow interactions between
adjacent impellers can be accurately computed in stirred
tanks that are "tted with multiple impellers as presented
in Harvey, Wood and Leng (1997). This computational
work suggests that the circulation patterns (in STRs
"tted with multiple impellers), and hence possibly mixing
performance, is very sensitive to the relative placement
and size of adjacent impellers. One of the main motiva-
tions of the present work is to develop an e$cient means
of assessing the impact of such design variables on mix-
ing performance in stirred vessels.

In previous computational studies of STR #ows vari-
ous methods have been used for #ow visualization. Typi-
cally, the results of CFD calculations are presented as
plots of the velocity vector "eld in one or more planar
slices through the three-dimensional "eld. Sometimes the
three-dimensional "eld is spatially averaged and again
presented as a vector "eld in a 2D section. Occasionally
streamlines are computed from two components of the
vector "eld in some 2D section of the #ow located at
a speci"c coordinate of the transverse dimension, neglect-
ing the third (transverse) component of the velocity. Such
streamline plots can also be derived from spatial or time
averaged data (e.g., Harvey et al., 1997). All of these
techniques are attempts to reduce the number of dimen-
sions of a 3D #ow "eld, for the purpose of visualizing the
#ow. At best none of these techniques give any direct
information about mixing, and at worst they can give
completely misleading impressions about the #ow. An-
other commonly used method for analyzing #ow "elds
involves embedding passive tracer particles in the #ow
and computing their motion within the #ow by solving
the Lagrangian equation of motion.

One di$culty in studying mixing in laminar STR #ows
arises from the very long mixing time inherent in laminar
#ows (which may be of the order of several hundred
impeller revolutions). Another di$culty comes from the
inherent sensitivity of chaotic trajectories to errors and
the rate of propagation of errors in numerical integration
schemes. Souvaliotis, Jana and Ottino (1995) have exam-
ined the e!ect of three types of errors present in mixing
simulations. They show that integration error can grow
proportional to the square of the integration time. Con-
sequently even very small errors can quickly grow to the
order of the size of the tank. This property imposes
serious limitations on the accuracy of particle trajectory
calculations and questions remain regarding the use-
fulness of such calculations for evaluating mixing
performance.

Besides avoiding quantitative errors, a useful calcu-
lation must not change the qualitative dynamics of the

#ow. The Hamiltonian nature of 3D laminar #ows results
in the formation of invariant (KAM) surfaces which sep-
arate the chaotic regions of the #ow [see, for example,
Ottino (1989), Aref and El Naschie (1995), and references
therein]. KAM tori located above and below the impeller
have been observed experimentally in an STR #ow
(Lamberto, Muzzio & Swanson, 1996). More recently
Fountain, Khakhar and Ottino (1998) presented experi-
mental results for a tank stirred by a rotating disk. Their
work revealed some of the detailed structure of the KAM
tori using a laser sheet illumination technique. One of the
key objectives in the design of STRs is to minimize the
number and size of isolated mixing regions, or better, to
prevent their existence altogether. Therefore it is essential
that such features in the #ow are neither created nor
destroyed as an artifact of the numerical integration.

In virtually all past computational studies of the STR,
mixing performance has been assessed entirely from velo-
city vector distributions. Although these plots yield valu-
able information about #ow patterns in the vessel they do
not give any direct information about mixing. The most
rigorous computational analysis of mixing would be to
solve a three-dimensional time-dependent scalar trans-
port equation for species concentration in the stirred
tank reactor. However the computational e!ort for such
a calculation would be orders of magnitude larger than
computing the #ow "eld. Furthermore, a single expensive
integration of a scalar transport equation would often be
insu$cient. To fully analyze mixing performance in
a stirred vessel, di!erent initial conditions (feed input
locations) should be examined, which would require mul-
tiple costly computations. It is a goal of the present work
to develop a quantitative method for computing mixing
performance which is more computationally tractable
than solving the full unsteady scalar transport problem.

In this paper we develop a discrete-time model of
the #ow, based on a numerical approximation of the
`PoincareH mapa. The map is created by integrating the
advection equation for approximately 104 particles
through one period of the #ow. The "nal r and z coordi-
nates and travel time are recorded for each of the par-
ticles at the stopping location. A map is de"ned between
the initial and "nal coordinates (including time). The time
evolution of advected particles is examined by computing
the suspension of the map. The long-time behavior of
a smaller number of particles (36) is examined by com-
puting the suspension of the map for many periods
of the #ow. The results are conveniently displayed as a
PoincareH section of the #ow, which reduces the dimen-
sions of the problem by one. A mixing time is de"ned
based on an arbitrary measure of mixing. Results from
the discrete-time model are compared with numerical
integration for four tank geometries. Previous results
have derived mixing properties from direct integration
of particle trajectories, which is computationally very
expensive. Our approach reveals the same global mixing
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Fig. 1. Relative motion of particle and impeller.

properties of the #ow in a much more computationally
e$cient manner. We conclude with a brief assessment
of the numerical accuracy of the method compared with
direct integration.

The mapping can be applied to di!erent multiple im-
peller reactor con"gurations to determine the location of
the invariant surfaces and KAM tori which act as bar-
riers to global mixing. Knowledge of these issues will
facilitate the design of improved stirred tanks. Internal
impeller con"gurations can be adjusted to facilitate #ow
between adjacent impellers, and inlet and exit feed loca-
tions can be positioned for optimal mixing conditions.

2. Discrete-time model

In this section we describe a method for creating a dis-
crete time model of the advection of passive particles, and
derive estimates of the mixing e!ectiveness, including the
mixing time.

We demonstrate the construction of the map using
examples computed for a three-dimensional, laminar
#ow "eld in an impeller stirred vessel for a number of
di!erent internals con"gurations (see Fig. 3). Additional
details of the geometry and #ow are presented in the next
section. In these #ow examples a large number of par-
ticle trajectories (10011 and 39621 for the coarse and "ne
grids, respectively) are computed for a period of time
equal to the time required for 500 relative revolutions of
the impeller. What we mean by relative revolution is
described next.

To create the discrete-time map we start with an evenly
spaced grid of initial particle locations at time t"t

0
, and

we compute each particles' motion (by integrating the
advection equation) through one complete period of the
#ow. During one period of the #ow, the impeller makes
one complete revolution relative to each particle. Thus
the distance and time traveled will, in general, be di!erent
for each particle. This procedure is graphically illustrated
in Fig. 1. Fig. 1a shows the initial orientation of the
impeller and the ith particle at time t"t

0
. The impeller is

rotating at a speed of X and the particle is, at the initial
instant, moving with velocity v

p
. Since the highest velo-

city in the tank is the tip velocity, the particle velocity will
never be as high as the impeller speed. When viewed from
an Eulerian frame of reference, the particles will appear
to circulate around the circumference of the tank in the
same direction as the impeller, as illustrated in Figs. 1a}e.
The particle motion will however, lag the motion of the
impeller and the impeller will rotate at least one complete
revolution (relative to the tank) before moving past the
particle again. At this point the impeller is once again at
its initial h-orientation relative to the ith particle. We
cease integration of each particle trajectory when each
has traveled through one period of the #ow; i.e., when the
relative orientation of the particle and the impeller return

to their initial h-orientation. This stopping condition is
found by monitoring the angle / between each particle
and a reference position, R, attached to the rotating
frame. When /"2p for the ith particle we stop the
integration procedure for that particle and note its total
time as (dt)

i
. The hyperplane containing the particles at

their "nal location de"nes a Poincare& section of the #ow.
A relative impeller revolution, so de"ned, will hereafter be
referred to as a single period of the #ow.

It should be noted here that the same basic procedure
for constructing the PoincareH section can be applied to
tanks with wall ba%es. However, for a ba%ed tank the
implementation is not as straightforward since the #ow
period is di!erent. The appropriate stopping condition
for the integration is when a particle has returned to the
same relative angular position with respect to both the
impeller and a reference point on the wall of the tank
(e.g., a ba%e) simultaneously (which is one period of the
#ow).

A second-order Adams multistep method is used for
the time integration of the particles. The error associated
with this scheme is discussed in a later section. Once the
initial integration step is complete, the position vector of
each particle at the /"0 and /"2p hyperplanes is
known. Next we seek a formal relationship which maps
the set of initial coordinates for each particle, x0

i
, (at

/"0) to the set of "nal coordinates for each particle,
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Fig. 2. PoincareH mapping interpolation procedure.

x1
i
, (at /"2p). This mapping can be constructed as

follows:

xn`1
i

"A
i
xn
i

(1)

This expression maps the position vector, xn`1
i

of the ith
particle at the (n#1)th period of the #ow (at
/"2(n#1)p) to the particles' position vector at the
previous or nth revolution, xn

i
(at /"2np). The coe$-

cient matrix, A
i
, is a diagonal matrix whose o! diagonals

are zero and the diagonal elements are found after inte-
grating the particles for the "rst period of the #ow. An
attractive feature of the mapping is that it reduces the
dimension of the three-dimensional system by one.
Therefore the vector x

i
contains only the radial coordi-

nate r
i
"Jx2

i
#y2

i
and the axial coordinate z

i
. Thus Eq.

(1) can be rewritten as

rn`1
i

"f
r
(rn
i
, zn

i
), zn`1

i
"f

z
(rn
i
, zn

i
).

The map de"ned by Eq. (1) is continuously and in"nitely
di!erentiable with respect to the scalar components of x.
The mapping is also invertible and one-to-one and the
matrix A

i
can be made to have only positive diagonal

elements by a suitable choice of the origin of the coordi-
nate system. Therefore the Jacobian of Eq. (1) is every-
where positive, so the map is orientation preserving. The
two diagonal elements of the coe$cient matrix A

i
are

computed as follows:

A
i
"A

r1
i
/r0

i
z1
i
/z0

i
B

where (r0
i
, z0

i
) is the initial position of the ith particle and

(r1
i
, z1

i
) is the ending position vector of the particle.

To keep track of time in a common frame of reference,
the time needed for the impeller to become re-aligned
with the ith particle is denoted as (dt)

i
and during iter-

ation of the map of Eqs. (1), the total age of each particle
is accounted for by summing the time required for the
motion of each iterate of the map.

The mapping procedure can be best explained through
the use of Fig. 2 in which the particle P is followed
through the "rst few iterations of the discrete mapping.
In this "gure, a section of the initial uniform grid of
particles (black dots) is shown together with a small
section of the "nal grid point locations (cross-hatched
region). Eq. (1) is applied to the particle with initial
location denoted P

0
in Fig. 2 resulting in its movement to

point P
n

illustrated by the dotted line. A di$culty now
arises due to the fact that the mapping is de"ned only at
a discrete number of locations (black dots) and, unless we
use an in"nite number of particles, we can never expect
a particle to land precisely at a location where the map-
ping is de"ned. The point P

n
of Fig. 2 is one such point

whose trajectory from iteration n to iteration n#1
(shown by the dash}dot line) is unknown. Interpolation

of the discrete mapping involves "nding a unique point
P
n`1

for points like that of point P
n

which lie o! the
discrete mapping.

The next step is to "nd the index i, j of the point in the
discrete mapping which is closest to the current particle
position P

n
. A simple search algorithm can be con-

structed to "nd point 1 which is closest to P
n
and also the

points 2}4, together which makeup P
n
's four closest

neighbors. From the mapping we know that points 1}4
map to the points 1@}4@.

At this point, the simplest way to approximate
P
n`1

would be to use the nearest neighbor and map
all points that are closest to the point 1 (which would
fall into the shaded square of Fig. 2) to the point 1@.
Such a map is not one-to-one, and therefore unaccept-
able.

The next simplest interpolation procedure would be to
use a bilinear interpolation to determine P

n`1
based on

the previously found surrounding known values of the
discrete mapping (points 1}4). Coe$cients D

i
and D

j
are

found, based on the initial discrete grid points 1}4 in
the following manner:

x
P
"x

1
#(x

2
!x

1
)D

i
#(x

3
!x

1
)D

j

#(x
4
!x

3
!x

2
#x

1
)D

i
D
j

(2)

where x
P
is the position vector of the point P

n
of Fig. 2 for

which the discrete mapping is to be interpolated. Eqs. (2)
consists of two equations for the unknown coe$cients
D
i
and D

j
. As x

P
Px

1
, then D

i
and D

j
tend to zero as

required. Similarly, D
i

and D
j

both tend to unity as
x
P
Px

4
. These coe$cients D

i
and D

j
are then used to

determine the position P
n`1

from the known mappings
of the surrounding points

x
Pn`1

"x@
1
#(x@

2
!x@

1
)D

i
#(x@

3
!x@

1
)D

j

#(x@
4
!x@

3
!x@

2
#x@

1
)D

i
D
j
. (3)
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Table 1
Impeller placement characteristics

Case d Impeller Dia. (m) Height (m)

1 I
1

(FBT) 1.1 0.60
I
2

(PBT) 2.2 2.26
I
3

(PBT) 1.7 3.94
2 I

1
(FBT) 1.0 0.60

I
2

(PBT) 2.2 2.10
I
3

(PBT) 1.7 3.60
3 I

1
(FBT) 1.0 0.60

I
2

(PBT) 2.2 1.60
I
3

(PBT) 1.7 2.60
4 I

4
(PBT) 1.2 3.60

I
1

(FBT) 1.1 0.60
I
2

(PBT) 2.2 1.60
I
3

(PBT) 2.2 2.60
I
4

(PBT) 2.2 3.60

Using this technique, each point in the nth plane is
mapped onto a unique point in the (n#1)th hyperplane
at /"2pn, so the map is both onto and one-to-one.

If dt
1

represents the time required for a particle to
move from point 1 to 1@ in Fig. 2 and dt

2
, dt

3
and dt

4
represent analogous times for points 2, 3 and 4, then the
time required for a particle at P

n
to move to P

n`1
can be

found using the coe$cients D
i
and D

j
and an expression

similar to Eq. (3).
A bi-cubic interpolation procedure was also performed

to study the e!ect of using higher-order interpolation on
the performance of the mapping. A sixteen point stencil
of points surrounding the point P

n
of Fig. 2 was used in

this technique. Cubic splines were "t in one direction and
then in the other spatial dimension. The stencil was
centered around the point P

n
except near boundaries of

the domain, in which case centering was not possible.
To study the e!ect of the order of the interpolation on

the mapping performance, both the bi-linear interpola-
tion described above and the bi-cubic interpolation is
used on each of 4 di!erent stirred tank con"gurations.
For the bi-cubic interpolation, 2 di!erent grid densities
are employed. These results are presented in the next
sections.

3. Computational results

In order to use the particle mapping procedure de-
scribed in the previous section, the three-dimensional
velocity "eld in a stirred tank is required for the integra-
tion of the motion of the particles for the "rst #ow period.
Due to spatial limitations of the present paper, and since
the solution procedure for the velocity "eld is adequately
documented in the literature, a full description of the #ow
solution is not included. Details of these techniques as
well as validation of the method with experimental Laser
Doppler Velocimetry (LDV) data for laminar #ow in
impeller stirred vessels and the numerical methods used
in the solution of the incompressible Navier}Stokes
equations can be found in Harvey et al. (1995, 1997);
Harvey and Rogers (1996) and references therein.

3.1. Vessel geometry and operating conditions

The mapping procedure is demonstrated on the four
di!erent stirred vessel geometries illustrated in Fig. 3. In
each of these "gures the computational grid for all solid
surfaces in the domain are displayed. The case 1 and
2 reactor con"gurations contain three impellers while the
other two cases contain four impellers. Case 3 contains
an impeller con"guration which, starting from the top,
contains successively larger impellers and, except for the
absence of ba%es, is geometrically similar to case 1 in
Harvey et al. (1997). Table 1 contains the position and
size information for each impeller in all four cases. In this

table and in the discussions to follow impeller 1 is the
impeller closest to the bottom of the tank. Reference
to a particular impeller will often be shortened to I

1
and I

2
, etc.

The tank diameter, D, is 3.66 m with a total "ll height,
¹, of 4.66 m. The diameter of the largest impeller,
d"2.2 m for each case (see Table 1); the impeller rota-
tional speed was 40 rpm (N"0.667 rev/s); #uid kin-
ematic viscosity was 0.0322 m2/s and the Reynolds
number Re"d2N/l"100. This represents typical
blending conditions of high viscosity type materials.

3.2. Cross-yow streamlines/velocity vectors

Velocity vectors and streamlines are frequently used to
visualize #uid #ows. The velocity vectors of Fig. 4 are
time averaged (Harvey & Rogers, 1996). Cross-#ow
streamlines are lines drawn tangent to the time-averaged
cross-#ow velocity vectors in a h-plane (see Fig. 5). One
should be very careful interpreting "gures such as Figs.
4 and 5, because they only show data in a two-dimen-
sional cross-section of a #ow that is actually three dimen-
sional. When examining plots like Fig. 5 there is a strong
tendency for one to perceive that the streamlines are
closed. With the possible exception of a very few (corre-
sponding to KAM tori), the lines are not closed. The
cross-#ow streamlines are relatively short segments of
curves which approximate cross-sections of the invariant
manifolds of the #ow. In the real three-dimensional #ow,
#uid elements may be convected across some of these
apparent streamlines in other h-planes. Thus pictures
such as Figs. 4 and 5 tend to suggest barriers in the #ow
which do not really exist in three dimensions, or in the
Lagrangian view of the #ow.

The main utility of plots like Figs. 4 and 5 is that they
give a qualitative picture of the geometry of the #ow and
allow one to quickly spot di!erences that may arise from
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Fig. 3. Geometry and surface grid for cases 1}4.

very subtle changes in tank design. Thus di!erences in
the number and location of hyperbolic and elliptic cycles
in the #ow are evident by comparing Figs. 4a}d, and
likewise Figs. 5a}d. For example, in Fig. 5a there appears
to be "ve elliptic cycles in the #ow, while there are only

two in Fig. 5c. Similarly, Fig. 4d suggests the #ow for the
case 4 con"guration has four relatively large elliptic
cycles; the "rst two are located near the tips of the top
two impellers, and there are two located near the tip of
the third impeller. Two more elliptic cycles, smaller in
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Fig. 4. a}d. Time-averaged velocity vectors for cases 1}4. Fig. 5. a}d. Cross-#ow streamlines for cases 1}4.

size, are visible near the impeller shaft in Fig. 4d. Quali-
tative geometric characteristics such as these may be very
important in determining the overall mixing performance
of a given #ow. However, choosing the best reactor
con"guration from these results alone would be di$cult,
if not dangerous. Information about the geometry of the
#ow alone does not give the quantitative measures of
mixing performance that we seek in the present work.
Perhaps in the future when more is understood about
mixing in stirred tanks it will be possible for one to screen
designs by simply looking at the geometry of #ows as

revealed by plots of vector "elds and cross-#ow stream-
lines. The results of the next section will illustrate addi-
tional features of the #ow that are revealed more
accurately than is possible using cross-sections of the
velocity "eld and streamlines.

3.3. PoincareH sections

Figs. 6a}d show PoincareH sections in the /"0 surface
for both direct integration of only 36 particles (Fig. 6a)
and the mapping procedure using various grid densities
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and interpolating schemes (Figs. 6b}d) for the case
1 vessel con"guration. For Fig. 6a, direct integration
was carried out for only 36 particles, the starting location
of each is denoted by the large symbols. Each of the 36
trajectories of Fig. 6a was carried out for 500 periods
of the #ow. For Figs. 6b}d, the particles (10,011 for
Figs. 6b and c and 39,621 for Fig. 6d) were integrated for
only one relative revolution (#ow period); the mapping
procedure was then applied for the remaining 500 #ow
periods. The initial particle locations for the 36 particles
shown in Figs. 6a}d (denoted by the large symbols) are
identical.

Figs. 6b and c show the performance of the mapping
using bi-linear and bi-cubic interpolation, respectively.
Fig. 6d shows the mapping using the third-order interpo-
lation and a grid of particles which is double the size of
the one used in Figs. 6b and c. Very good agreement
between the integration and mapping procedure is ob-
served for all three mappings. The `emptya spaces in
Figs. 6a}d are present because a relatively small number
of particles (36) were used to make the "gures. Some
regions of the tank are separated from others by KAM
surfaces. Segregated regions show up as empty subspaces
in the PoincareH sections if none of the tracer particles
happened to have initial coordinates located within these
regions. It is very important that no attracting or repell-
ing objects are created as an artifact of error, either in
the integration or the map. The existence of such features
are clearly inconsistent with the conservative nature of
the #ow.

Figs. 7}9 show the same sequence of mapping results
for cases 2}4, respectively. Mixing in all these cases
is signi"cantly improved over case 1. Particle motion
appears more chaotic near the top of the vessel. The
partially segregated region at the top of the vessel in case
1 is not present in cases 2}4. The mapping and in-
tegration results look remarkably similar for cases 1}3.
A large segregated torus exists just below I

2
at the tip

for all cases. The smaller torus shaped regions located
just above the larger tori in Figs. 7 and 8 does not appear
to be as well de"ned, if present at all, in Fig. 9.
The locations of these regions as predicted by the map-
ping compares well with that of the integration. For
case 2 (Fig. 7), a small torus is present at the tip
of I

3
.

For case 4 using bi-linear interpolation and the coarse
grid (Fig. 3b), the results obtained with the mapping
procedure are not good. Most of the particle motion has
collapsed into regions near the impeller blade tips. In the
CFD computation for the velocity "eld, the divergence of
the velocity was reduced to a level of 10~3 for case 4. In
cases 1}3 the divergence was reduced to levels below
10~4, a full order of magnitude lower. A history of the
magnitude of the divergence of the velocity versus iter-
ation count in the CFD calculation for each case is
plotted in Fig. 10. Probably the poor performance of the

lower order mapping solution for case 4 is due to the
higher levels of divergence which remained in the velocity
"eld.

Figs. 6}9 resolve most of the important structure pres-
ent in the #ow utilizing a very small fraction of the actual
dataset generated by the mapping procedure (only 36 out
of 39,621 particles were used for the "ne grids). Figs. 6}9
would not be intelligible if all the particles were shown. In
the next sections, techniques which measure mixing per-
formance are presented which make use of the entire
dataset.

3.4. Particle separation distance

Fig. 11 shows the results obtained with the discrete-
time map using the "ne grid (141]281) of particles and
bi-cubic interpolation. The map was iterated for 500 #ow
periods. In Fig. 11 each point in the plane is colored
according to the maximum distance, (*s)

.!9
, that the

particle (starting from that point) moved in the h-plane.
The maximum separation distance is de"ned as the max-
imum separation distance between any two points on the
trajectory, and the distance is normalized by the tank
height.

Regions colored magenta indicate regions where #uid
is convected large distances and can be associated with
good mixing. Blue regions indicate regions where #uid
convection is low and are associated with trapped or
isolated zones in the reactor. Fig. 11 portrays a well-
resolved picture of the locations of the poorly mixed
regions in each reactor design. Note that in all of the
cases, the bottom portion of the reactor is fairly iso-
lated from the upper portion of the reactor. KAM
surfaces appear as discontinuities in the color scheme
of the plots of Fig. 11. For case 1 (Fig. 11a), mixing
from the liquid level surface is poor. The "gure also
shows the location of 2 distinct isolated regions near the
tips of the top two impellers in the reactor. Fig. 11b
(case 2) shows 3 isolated tori which are colored blue.
Mixing near the surface of the tank has noticeably
improved over case 1. Case 3 (Fig. 11c) illustrates
good mixing compared with the other cases. There are
no tori present for the top two impellers. The top
impellers have been sized so that very little #ow separ-
ation occurs between I

2
and I

3
and between I

3
and I

4
.

For optimal mixing we would like a #uid element
at each point in the reactor to visit every other point in
the reactor. This would mean that (*s)

.!9
for each

point would be unity. Every point contained inside a
chaotic region of the reactor will visit every other point
inside that chaotic region. A way to improve mixing is
to make the chaotic regions large; the optimal being
a single chaotic `seaa that encompasses the entire
vessel.
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Fig. 6. a}d. PoincareH maps for case 1. (a) Integration; (b) coarse grid, bi-linear mapping interpolation; (c) coarse grid, bi-cubic interpolation; (d) "ne
grid, bi-cubic interpolation.
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Fig. 7. a}d. PoincareH maps for case 2. (a) Integration; (b) coarse grid, bi-linear mapping interpolation; (c) coarse grid, bi-cubic interpolation; (d) "ne
grid, bi-cubic interpolation.
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Fig. 8. a}d. PoincareH maps for case 3. (a) Integration; (b) coarse grid, bi-linear mapping interpolation; (c) coarse grid, bi-cubic interpolation; (d) "ne
grid, bi-cubic interpolation.
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Fig. 9. a}d. PoincareH maps for case 4. (a) Integration; (b) coarse grid, bi-linear mapping interpolation; (c) coarse grid, bi-cubic interpolation; (d) "ne
grid, bi-cubic interpolation.
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Fig. 10. Plot of the history of the divergence of the velocity "eld for the
CFD calculations (cases 1}4).

Table 2
Mixing time measure: (1/<):

V
(*s)

.!9
d<

Case d 71]141 241]281 71]141 141]281
O(1) O(1) O(3) O(3)

1 0.5977 0.6327 0.6590 0.6508
2 0.8937 0.9061 0.9168 0.9065
3 0.8863 0.9212 0.9300 0.9303
4 0.6521 0.8151 0.9064 0.8974

3.5. Mixing time calculations

If the value of (*s)
.!9

is integrated over the tank
volume < as follows:

(*s\)
.!9

"

1

<P
v

(*s)
.!9

d<

thus, a purely quantitative measure of mixing is obtained.
The values of (*s\)

.!9
are tabulated in Table 2 for each

case. The best performing mixer is case 3. These results
show the sensitivity of the mapping results to grid re"ne-
ment and order of the interpolation. The results using the
higher-order interpolation are less sensitive to grid re-
"nement than the lower-order interpolation results.

If an integral scale, *s, is assigned (arbitrarily) to indi-
cate a certain level or degree of `mixednessa say *s"R
(vessel radius), then the time required for the particles to
reach this degree of separation from their initial condi-
tions can be calculated. Fig. 12 shows a map of the
mixing time for each case. Blue regions indicate fast
mixing; red regions indicate relatively slow mixing. In
Fig. 13, the fraction of the tank volume which has reach-
ed this level of particle separation is plotted as a function
of time. The reference time, t

3%&
is the time required for the

impeller to make 500 revolutions. The results for mixing
time presented in Fig. 13 for cases 1}3 are relatively
insensitive to the mapping resolution. However, the re-
sults for case 4, in which the velocity divergence is an
order of magnitude higher than the other cases, some
sensitivity to the mapping resolution is evident. For the
coarse grid (71]141) with linear interpolation, the frac-
tion of the tank which is mixed levels o! to about 0.77.

For the coarse grid with cubic interpolation the tank
volume fraction mixed at long times is about 0.95.

Comparing the di!erences between Figs. 13a and
b with the di!erences in Figs. 13c and d one can see that,
using the higher-order interpolation, the mapping is less
sensitive to the grid density than when using linear inter-
polation. These di!erences in sensitivity to grid density
and interpolation order is also evident by comparing the
numbers in Table 2. It is evident that the performance of
the mapping is more easily and e$ciently improved by
increasing the order of the interpolation than by simply
increasing the density of the particles involved.

3.6. Estimation of error

Since the three-dimensional velocity "eld is obtained
numerically, knowledge of #ow "eld variables is available
only at discrete locations.

In order to obtain a continuous particle path in the
#ow, interpolation of the discrete velocity "eld is re-
quired. This procedure will inevitably increase the
amount of divergence in the #ow to some level above
that amount illustrated in Fig. 10 and will ultimately
adversely a!ect the "nal results of the mapping.

First we evaluate the error introduced by the time
integration procedure. As mentioned earlier, a second-
order Adams multistep method is used for the time inte-
gration of the particles. For all computations, a time step
of *t"0.0015 seconds was used. Souvaliotis et al. (1995)
show that the global error associated with a time integra-
tion scheme is proportional to the square of time. Using
their notation we write the global error in the particle
position at the kth time integration step as

D*x(1)D"Dx(1)
N

!x(1)D"A *tm~1t2 (4)

where x(1) is the exact particle position, x(1)
N

is the numer-
ical approximation, *t is the step size of the time integra-
tion, m is the order of accuracy, t is the time and A is
a constant. For #ow between concentric cylinders, they
show that the constant of proportionality in this error
term A)0.001 for all t)100. If we assume the error is
the same for the present stirred tank computations, then
direct integration of a particle for one relative impeller
revolution (t+1 s), results in an error in the position
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vector, D*x(1)D)10~6 m. However, for integration of
a particle for 500 impeller revolutions (+750 s), the
accumulated error is about 0.84 m, which is clearly unac-
ceptable and of the same order as the largest scale of the
system. However, there is no reason to believe that the
constant of proportionality, A, for the present applica-
tion is, in any way, comparable to that for #ow between
concentric cylinders.

Now we consider the global error in the present map-
ping procedure. For the map, Eq. (4) represents the total
error accumulated during the initial integration of the
particle (after the "rst #ow period). In additional to this
we expect error to accumulate with successive iterations
of the map.

The local error associated with each #ow period (iter-
ation of the map) is D*x(i)

N
D"O(dxp), where dx is the

mapping mesh size and p is the order of accuracy of the
spatial interpolation scheme. Using an analysis similar to
that in Souvaliotis et al. (1995), the total error at the kth
#ow period using the mapping is

D*x(k)D"D*x(1)D#K
k
+
i/2

F(i?k) )*x(i)
N K

)D*x(1)D#
k
+
i/2

DF(i?k) )*x(i)
N
D

+D*x(1)D#
k
+
i/2

B
i
(k!i)dt

i
D*x(i)

N
D (5)

where, as in Souvaliotis et al. (1995), B
i
depends on the

#ow-"eld, and F(i?j) refers to the exact mapping and dt
i
is

the time associated with the ith iteration of the map.
Substitution of Eq. (4) into Eq. (5) and also letting
B"max(B

i
), dt"max(dt

i
), D*x

N
D"maxD*x(i)

N
D and as-

suming strict equality, an expression for total error at the
kth iteration of the map is obtained

D*x(k)D)A *tm~1t2
1
#BD*x

N
Ddt

k(k!2)

2

(A *tm~1t2
1
#

B

2

D*x
N
D

dt
(k dt)2 (6)

where t
1

is the time after the "rst period of the #ow.
Substituting D*x

N
D"B

N
(dx)p, we can write

D*x(k)D(A *tm~1t2
1
#

BB
N

2

(dx)p

dt
t2

(A *tm~1t2
1
#C

(dx)p

dt
t2. (7)

The numerical integration results from the "rst relative
revolution of the impeller are used at each iterate of the
map. In order that the error in the map be less than that
due to direct integration we must have

D*x(k)D
m

D*x(k)D
i

"A
t
1
t B

2
#

C

A

(dx)p

dt *tm~1
(1

or for large times, t

C

A

(dx)p

dt

1

*tm~1
(1. (8)

In the present results, the time integration step-size,
*t"0.0015 for all calculations, and k"500 iterations
corresponds to approximately t"750 s. Assuming the
constants A and C are equal, Eq. (8) yields 11.5, 0.0078
and 0.00098 for the coarse grid with bi-linear interpola-
tion, the coarse grid with bi-cubic interpolation and the
"ne grid with bi-cubic, respectively.

There is no reason to assume that the constants of
proportionality, A and C, are equal. In fact, to properly
account for the vast di!erence in time scales between one
integration step and one iteration of the map, the as-
sumption that A *t"C dt would seem more appropri-
ate. If this is true then we can see that the error in "ne
grid mapping with bi-cubic interpolation is of the same
order as the error in the time integration. It is worth
pointing out, with reference to Eq. (8), that the mapping
can always be made more accurate than direct time
integration with proper selection of the interpolation
scheme and particle grid resolution, dx. On an equal
error basis, the mapping requires much less e!ort.

3.7. Computational requirements

Use of the mapping procedure can result in signi"cant
savings in computational e!ort. Integration of the
motion for just the 36 particles shown in Figs. 6a}9a for
500 relative revolutions of the impeller required approx-
imately 22 h of CPU time on a 500 MHz DEC Alphasta-
tion. At this rate it is easy to see that integration of
a number of particles equal to the coarse grid density
(10,011) for a comparable length of time would be expen-
sive to say the least. Direct integration of a population
equal to the "ne grid (39,621) would be virtually impos-
sible using the current step-size. The mapping procedure
took approximately 1.4 hours of CPU time for the coarse
grid and 5 h for the "ne grid on the same computer.

4. Concluding remarks

A particle mapping procedure for laminar #ow in
stirred vessels has been developed. The technique in-
volves direct integration of the motion of a uniform grid
of particles for one complete revolution of the impeller
relative to each particle. Subsequent particle motion is
then obtained by the iteration of an algebraic map. Using
this technique the motion of tens of thousands of par-
ticles can be computed e$ciently in stirred tank vessels
for time scales on the order of the actual mixing time.
Direct integration of a comparable number of particles
for this length of time would possibly take several orders
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Fig. 11. a}d. (*s)
.!9

as a function of position in the vessel (cases 1}4).
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Fig. 12. a}d. Time to achieve (*s)
.!9

as a function of position in the vessel (cases 1}4).
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Fig. 13. a}d. Tank volume fraction with *s*(*s)
.!9

vs. time for the 4 di!erent mappings.

of magnitude more computational time than that re-
quired by the mapping. We have shown that the mapping
procedure can be made more accurate than direct par-
ticle integration at a fraction of the cost.

A mixing time was de"ned based on the time required
for a particle to achieve some arbitrary separation dis-
tance. This mixing time calculation can be used to com-
pare di!erent stirred tank con"gurations and to assess
the e!ect of impeller speed.

The computed PoincareH sections reveal details of the
#ow, such as isolated mixing regions, which are not appar-
ent in the velocity vector "eld. We have shown that the
relative impeller size and spacing can be altered so as to

increase the size of the active mixing regions. With knowl-
edge of the locations of isolated mixing regions, improved
feed input and output locations can be identi"ed.

Acknowledgements

The authors would like to thank Dr. John Gucken-
heimer, Professor of Mathematics and of Theoretical and
Applied Mechanics at Cornell University for his valu-
able suggestions and comments. We would also like to
thank the reviewers of the manuscript for their valuable
suggestions.

A.D. Harvey III et al. / Chemical Engineering Science 55 (2000) 667}684 683



References

Aref, H., & El Naschie, M. S. (1995). Chaos applied to yuid mixing.
Oxford, U.K.: Elsevier Science Ltd.

Baudou, C., Xuereb, C., & Bertrand, J. (1997). 3-D hydrodyn-
amics generated in a stirred vessel by a multiple-propeller
system. Canadian Journal of Chemical Engineering, 75,
653}662.

Fountain, G. O., Khakhar, D. V., & Ottino, J. M. (1998). Visualization
of three-dimensional chaos. Science, 181, 683}686.

Harvey, A. D., Wood, S. P., & Leng, D. E. (1997). Experimental and
computational study of multiple impeller #ows. Chemical Engineer-
ing Science, 52, 1479}1491.

Harvey, A. D., & Rogers, S. E. (1996). Steady and unsteady com-
putation of impeller stirred reactors. A.I.Ch.E. Journal, 42,
2701}2712.

Harvey, A. D., Lee, C. K., & Rogers, S. E. (1995). Steady-state modeling
and experimental measurement of a ba%ed impeller stirred tank.
A.I.Ch.E. Journal, 41, 2177}2186.

Lamberto, D. J., Muzzio, F. J., & Swanson, P. D. (1996). Using time-
dependent RPM to enhance mixing in stirred vessels. Chemical
Engineering Science, 51, 733}741.

Norwood, K. W., & Metzner, A. B. (1960). Flow patterns and mixing
rates in agitated vessels. A.I.Ch.E. Journal, 6, 432}437.

Oldshue, J. Y. (1989). Fluid mixing in 1989. Chemical Engineering, Vol.
96, No. 5, 33}42.

Ottino, J. M. (1989). The kinematics of mixing: Stretching, chaos and
transport. Cambridge: Cambridge Press.

Souvaliotis, A., Jana, S. C., & Ottino, J. M. (1995). Potentialities and
limitations of mixing simulations. A.I.Ch.E. Journal, 41, 1605}1621.

Whitton, M. J. (1993). Gas liquid mixing in tall vessels "tted with
multiple impellers. Ph.D. thesis, Cran"eld Institute of Technology.

684 A.D. Harvey III et al. / Chemical Engineering Science 55 (2000) 667}684


