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Abstract

Hypoxic zones and associated nitrate pollution from farms, cities and industrial facili-

ties is driving declines in water quality that affect ecosystems, economies and human

health in major rivers and coastal areas worldwide. In the Mississippi River, the

United States Environmental Protection Agency set a goal of reducing nitrogen load-

ing 20% by 2025, but estimating progress towards this goal is difficult because data

from in-stream gauges and laboratory samples are too sparse. Satellites have the

potential to provide sufficient data across the Mississippi River, if a key methodologi-

cal challenge can be overcome. Satellites provide data from visible light, but nitrates

are only observable with ultraviolet light. We address this methodological challenge

by using a two-step surrogate modelling procedure to link optical data and nitrates in

the Lower Mississippi River. First, we correlate in situ nitrate measurements to com-

mon water quality parameters, particularly turbidity and chlorophyll, using data from

water sensors installed at Baton Rouge, Louisiana, USA, and a long-term dataset from

Louisiana State University. Second, we correlate these water quality data to satellite

estimates of water quality parameters. We found a correlation between these water

quality parameters and nitrate concentrations, as indicated by a coefficient of deter-

mination, when the relationship was viewed in nonlinear parameter space. The spatial

extent of the correlation was tested with an upstream nitrate sensor 140 km north of

the estimation location. These results provide proof of concept that we can develop

models that use satellite data to provide large-scale monitoring of nitrates across the

Mississippi River Basin and other impaired rivers, globally.
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1 | INTRODUCTION

A major threat affecting coastal and marine ecosystems worldwide is

the proliferation of low oxygen, hypoxic zones. These areas, defined as

having bottom waters with dissolved oxygen values <2 mg/L, currently

number over 400 globally (Diaz & Rosenberg, 2008). Hypoxia is primar-

ily caused by excess nutrients (nitrogen and phosphorus) that originate

from farms, cities and industries, often in inland watersheds, far

removed from the coastal areas they impact. These excess nutrients

drive spatially extensive growths of algae in the coastal ocean that,

when they die and sink to the bottom, rapidly decompose and deplete

the oxygen in the bottom water. Coastal hypoxia, which typically

happens during the summer months, is further exacerbated by water

column stratification, which precludes mixing of bottom water with

oxygen-rich surface water. In addition to the local effects of excess

nutrient loading into waterways, coastal hypoxia has been linked to
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reductions in aquatic biodiversity, fishery valuation and tourism

(Rabotyagov, Kling, et al., 2014; Smith et al., 2017). A key challenge in

achieving water quality goals aimed at reducing dead zones is a lack of

data for monitoring changes in nutrient concentrations in rivers.

In the United States (US), the US Environmental Protection

Agency (EPA) set a goal to reduce excess nutrient loading to the Gulf

of Mexico (GOM) by 20% by 2025 (Greenhalgh & Sauer, 2003; Rabo-

tyagov, Kling, et al., 2014). The GOM Dead Zone is the second largest

in the world (5-year average km2, range 5000–22,000 km2

Rabalais, 2011; Rabalais et al., 2002; https://www.epa.gov/ms-htf/

northern-gulf-mexico-hypoxic-zone).

Driven by flows from the Mississippi River (MR), which drains the

3.2 million km2 Mississippi River Basin (MRB, the fourth largest river

basin in the world), the GOM Dead Zone, typically occurs off the Loui-

siana coast during the summer. In 1997, the US EPA established the

MR/GOM Hypoxia Task Force (Hypoxia Task Force [HTF]) to under-

stand the causes and effects of GOM hypoxia and coordinate efforts

to reduce the size, severity and duration of the hypoxic zone.

To do this, the HTF promoted the formation of research pro-

grammes, partnerships and legislation, aimed at meeting these goals.

In 2001, the HTF published the first Hypoxia Action Plan, a national

strategy to reduce the frequency, duration, size and intensity of the

GOM Dead Zone. This strategy, which was updated in 2008 and

2015, provides coastal, within-basin and quality-of-life goals. The

coastal goal is to reduce the 5-year running average areal extent of

the GOM hypoxic zone to less than 5000 km2 by 2035 with an

interim 20% reduction of nitrogen and phosphorus loading by 2025.

The within-basin goal is to restore and protect the waters of the

31 states and tribal lands within the MRB through nutrient and sedi-

ment reduction actions to protect public health and aquatic life. The

quality-of-life goal seeks to improve communities and economic con-

ditions (agriculture, fisheries and recreation) across the MRB through

improved public and private land management and incentives to

improve water quality (full policy goals, implementation strategies and

action plans can be found at https://www.epa.gov/ms-htf).

These EPA policy goals have driven investment in developing

practices to reduce nutrient loading into MRB waterways and mea-

sure the effects of these practices. There is evidence that these prac-

tices reduce nutrient loads, especially for nitrate (NO3–), the inorganic

form of nitrogen that largely drives the algal lifecycle responsible for

GOM hypoxia. While there have been many research and monitoring

studies showing the effects and cost-effectiveness of practices

designed to reduce nutrients (Bennett et al., 2016; Greenhalgh &

Sauer, 2003; McLellan et al., 2015; Rabotyagov, Campbell,

et al., 2014), and many others, particularly nitrate, one problem is that

current water monitoring to measure nitrate is lacking. Nitrate absorbs

light in the ultraviolet (UV) spectrum (200–205nm Edwards et al.,

2001). Therefore, it is typically measured either with in-water UV

optical sensors, mounted to continuous water quality gauges, or from

discrete water quality samples analysed with UV spectroscopy in a

laboratory. Both methods are expensive and time consuming, and as

a result, stations are relatively sparse, and large reaches of the MRB

remain unmonitored.

Remote sensing using satellites provides the ability to monitor

the earth at greater spatial scales by allowing for low-cost, repeated

‘virtual gauging’ of waterbodies. Remote detection of water constitu-

ents with a spectral signature outside of visible light spectrum, that is,

a UV and IR spectral signature, is not possible because of the high

absorption of water at these wavelengths. One approach to circum-

vent this issue is to search for correlations to visible spectral features.

For instance, estimation of nitrate concentrations in rivers from corre-

lations to other water parameters (e.g., discharge, turbidity and spe-

cific conductance) has been developed by the US Geological Survey

(USGS) under the framework of surrogate modelling (Rasmussen

et al., 2005; Williams, 2021). Predictive models of nitrate concentra-

tions have also been demonstrated (Di Nunno et al., 2022) using non-

linear autoregressive models using only inputs of discharge, dissolved

oxygen, specific conductance and water temperature. Previous work

using surrogate models focused on correlations between lab sample

analysis from water grabs and in-water nutrient gauges. Here, we

extend this analysis to include remote sensing data, thereby going

from sparse sampling of single points to spatially dense sampling of a

region, which is necessary to provide proof of concept for basin-wide

monitoring to track progress on the US EPA nutrient reduction goal.

We build on the surrogate modelling approach with a two-step

procedure that uses both in situ and satellite data. First, we correlate

in situ nitrate measurements to common water quality parameters, in

particular turbidity and chlorophyll, with a training dataset formed

from an above-water sensor installed for 36 months, in-water sensors

operated by the USGS and a long-term dataset from Louisiana State

University (LSU). Second, we correlate the local gauge data to satellite

estimates of the same water quality parameter from Sentinel-2.

Informally, we refer to the training data models as static, because

they only involve function estimation, and we refer to the nonlinear

time series analysis methods as dynamic, because (due to feedback

terms) they require state estimation. Here, we limit our study to

(static) surrogate model estimations of nitrate concentration in rivers

because the remote sensing data are both less frequent and have non-

uniform sampling (due to issues such as cloud cover), which precludes

the straightforward use of dynamic models. Our results, which show a

correlation between visible water quality constituents and nitrate con-

centrations in the Lower MR, are proof of concept for satellite-based

monitoring of nitrates. Insights gained through developing this

method can help inform the development of a system of models that

would use satellite data to remotely monitor nitrates across the MRB,

ultimately enabling estimates of progress towards the US EPA's goal

of reducing nitrates.

2 | METHODS

2.1 | Study area

We conducted this proof of concept in the Lower MR, which receives

drainage water from the entire MRB (Piazza, 2014). This is a highly

turbid river environment with stable nitrate concentrations
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(Zimmer et al., 2019), where various interventions (e.g., cover crops,

bioreactors and floodplain restoration) are being implemented by

NGOs, government and private actors to reduce nitrates (Piazza et al.,

2015). Specifically, we sought to establish a link between optical

reflectance (colour) data in the visible spectrum (≈400–700 nm) and

nitrates in the Baton Rouge region of the MR (Figure 1a). To do this,

we co-located an above-water hyperspectral sensor, manufactured by

Gybe (http://gybe.eco), with an in-water nitrate sensor in the MR at

Baton Rouge, Louisiana (USGS 07374000), 30� 260 14.360 0 N, 91� 110

33.90 0 W). This site also has a long-term water quality dataset col-

lected by LSU (described below). We also used water quality data

from a USGS station approximately 140 km north of Baton Rouge at

Natchez, Mississippi (31� 330 37.590 0 N, 91� 250 7.40 0 W) to test the

spatial extendability of our method. Nitrate measurements from USGS

have been available from Baton Rouge since 2012, and those at

Natchez only began operations in September 2022. The two sites,

Baton Rouge and Natchez, share common source waters with little

mixing or dilution from extraneous inputs. In a companion paper, we

will examine this method for data collected in a similar manner in

Tensas Bayou in the Atchafalaya River Basin near Bayou Sorrel,

Louisiana (30� 090 58.10 0 N, 91� 210 10.30 0 W), where we investigate

extending the modelling to heterogeneous waters consisting of dis-

tinct optical signatures and using the nitrate sensor at Morgan City,

Louisiana (USGS 07381600). However, we first focused on the waters

of the Lower MR to establish the feasibility of the method.

2.2 | Modelling approach

Our method to remotely estimate nitrate concentrations from remote

sensing imagery uses a two-step procedure (sensu Stumpf et al.,

2016). In Step 1, in-water nitrate measurements are correlated to

common water quality parameters collected with the hyperspectral

sensor (in situ data), and in Step 2, the in situ data are correlated to

satellite estimates of the same water quality parameters. The overall

result is an estimate of nitrate concentration from operational satellite

water quality products such as chlorophyll-a and turbidity concentra-

tions estimated from Sentinel-2 (Vanhellemont & Ruddick, 2016). The

correlations are site (and region) specific, but they allow us to extrapo-

late from point nitrate data along a river to infer nitrate concentra-

tions in the region of the point sampling.

The quality of the models depends on the quality, quantity and

consistency of the input data. Therefore, we used three different

datasets to investigate models that correlate visible water parameters

and nitrates. The first dataset contains lab measurements from a

long-term study by LSU (Turner et al., 2022). The second dataset

contains observations from an above-water hyperspectral sensor,

manufactured by Gybe (http://gybe.eco). This sensor was vicariously

calibrated for water quality parameters (e.g., turbidity) with a co-

located USGS gauge. The LSU data represent a deep historical record

(23 years) and presumed high accuracy in constituent concentrations.

In contrast, Gybe's hyperspectral data record is shorter (3 years at

this location) and contains data only during daytime, because the

sensor depends on sunlight. Both datasets include turbidity and

chlorophyll-a concentrations. We combined the two datasets to

make a single training dataset, where the co-located USGS turbidity

gauge measurements were used to cross-calibrate the turbidity

values between the LSU measurements and the Gybe sensor data. A

cross-correlation for chlorophyll-a was not possible, because the

USGS gauge does not have a chlorophyll-a sensor. Therefore, the

chlorophyll-a values for these two datasets were combined without

adjustment.

F IGURE 1 (a) Map of Baton Rouge, LA, with markings for the location of The Water Institute of the Gulf (blue star) and the Public Dock (red
triangle). (b) Sentinel-2 image of Baton Rouge, LA, on 18 October 2017 with a chlorophyll-a concentration of 34.4 μg/L. (c) Sentinel-2 Image from
31 January 2018 with high turbidity of 91.8 FNU. The images are not colour accurate RGBs and are constructed from the Sentinel-2 bands
(0.665, 0.560, 0.443) nm; thus, the sediment appears more yellowish than brownish. The location of the USGS sensor (Baton Rouge public dock)
is indicated by the (red) triangle, and the location of the Gybe sensor (The Water Institute of the Gulf) is indicated by the (blue) star.
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2.3 | In situ data

We installed the Gybe, above-water optical sensor in Baton Rouge

during Fall 2019 to measure a suite of water quality parameters

(e.g., turbidity and chlorophyll-a concentration) from the above-water

remote sensing reflectance (Rrs). This sensor contains two spectrome-

ters. One faces upwards, with a diffuser measuring the downwelling

irradiance, and one faces the water and measures the water-leaving

radiance. Both spectrometers are calibrated over a spectral range of

approximately 400–700 nm with >200 spectral bands. The Rrs is esti-

mated from the ratio of upwelling radiance to downwelling irradiance,

with a sky glint correction using the 3c algorithm (Groetsch et al.,

2017). The sensor is located on the dock of The Water Institute of the

Gulf (Figure 2), approximately 300 m downstream from where a

nitrate-plus-nitrite sensor has measured hourly data since 2012

(USGS 07374000). This is also the site where the LSU lab-analysed

samples were collected for biogeochemical parameters between 1997

and 2018 (Turner et al., 2022). The LSU dataset consists of 866 values

from all seasons, and the Gybe dataset reports 294 values. The Gybe

sensor typically reports data at 15-min time intervals; however, in this

study, we used only one summary measurement per day and only

values that passed strict quality control for issues like glint or variable

cloud cover are used. The combined dataset consists of 1160 values

of turbidity, chlorophyll-a and nitrates plus nitrates between 2004–

2018 (LSU) and 2020–2022 (Gybe). Additionally, because we were

interested on the effect of river discharge on model fit, we included a

dataset with contemporaneous USGS discharge values across this

same time period.

2.4 | Satellite data

We obtained top of atmosphere radiances (Lla) from the Sentinel-2

satellite from the European Space Agencies (ESA) Copernicus Hub

from January 2016 to January 2023. From 2016 until Fall 2017, this

collection consists only of Sentinel-2A with a 10-day revisit time. For-

ward from that date the revisit time is 5 days, corresponding to when

Sentinel-2B came online. Sentinel-2 imagery was processed to surface

reflectances, using the open-source code Acolite (Vanhellemont &

Ruddick, 2016). Satellite estimates of turbidity and chlorophyll-a con-

centration were computed using the algorithms of Nechad and Mis-

hira, respectively (Mishra & Mishra, 2012; Nechad et al., 2010). The

Nechad algorithms use a global water database for the satellite

estimates.

In this study, we adjusted the parameter values using the in situ

turbidity data available from USGS gauges to insure consistency

between the Sentinel-2 products and the training dataset. This pro-

cess is called vicarious calibration in remote sensing studies because it

uses local data for the correlations instead of a global database and

consists of a linear fit providing a gain and offset adjustment

(Murakami et al., 2022). The full image set consisted of 411 images of

which 91 were of sufficient quality (cloud and glint free) for use in this

study.

2.5 | Surrogate modelling

Our method uses a surrogate modelling approach to estimate nitrate

concentrations with remote sensing. Surrogate modelling is a term

used by USGS to describe the estimation of a water quality parameter

(e.g., phosphorus concentration) using correlation to other water

parameters, like turbidity and discharge (Rasmussen et al., 2005). The

utility of this approach is that the target parameter is usually more dif-

ficult or expensive to measure then the source parameters. For

instance, turbidity gauges are both less expensive and more reliable

than nitrate gauges. Specific surrogate models are empirical and site

specific. The mathematical problem is the estimation of a target vari-

able, y,

y¼ fðx1,x2,…,xnÞ, ð1Þ

in terms of multiple source variables x1,…,xn, given a discrete sample

set for both input (xn) and output variables (y). We call the above

problem static because it has no feedback (autoregressive variables).

However, in our approach and the examples described in this paper,

we also assume that the models are continuous, meaning that the tar-

get model is a surface (or more generally a manifold Ziemann, 2015),

which can be estimated by explicitly formulating the underlying

assumptions in the model and performing a linear or nonlinear regres-

sion method to estimate the model parameters.

The USGS guidelines for surrogate modelling assume linear

models for the model function fð�Þ. A linear framework provides well-

tested statistical and optimization procedures for model selection and

estimation. However, in this study, we extended the model types to

include nonlinear functions, specifically splines. Nonlinear models bet-

ter represent the curvature in underlying data, but the statistical

guidelines for model selection and optimization are more challenging.

F IGURE 2 Picture of the Gybe Sensor looking over the
Mississippi at The Water Institute of the Gulf with the Horace
Wilkinson Bridge in the background.
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Generally, nonlinear optimization requires two considerations—one

for model fit and one for model size. The spline models used here

achieve a parsimonious model by pruning an initial model fit by

removing terms that have the least impact on the model fit.

2.6 | Data normalization and preprocessing

Before we could apply the surrogate modelling approach, some trans-

lation of units was necessary to make the datasets consistent. For

example, the LSU dataset contained total suspended solids (TSS) con-

centrations, which we translated to turbidity with a linear regression

against USGS turbidity gauge values (see Figure 3). Similarly, we con-

verted the chlorophyll values in the Gybe data to values consistent

with the LSU dataset also using a linear regression. The Gybe spec-

trometer estimates a normalized difference chlorophyll index (NDCI)

using the 665- and 708-nm bands with model coefficients that were

initially calibrated, in part, with data from the MR Delta (Mishra &

Mishra, 2012). During the 3-year overlap (2016–2018), four daily

chlorophyll matches were found between the Gybe and LSU datasets.

Despite the limited number of matches, these are used to apply a

vicarious adjustment of ChlðLSUÞ¼0:72∗ChlðGybeÞ to bring the two

datasets into alignment.

Nitrate values are also matched between the USGS and LSU data-

sets. The USGS reports nitrogen as nitrate plus nitrite (NO3þNO2),

so we divided the LSU data by the molecular weight of nitrogen

(14.01) to relate the equivalents to μmol. The LSU and USGS datasets

showed excellent consistency as shown in Figure 4, and so, unlike the

turbidity and chlorophyll values, no vicarious adjustment is added to

bring these two datasets into alignment. We also added a seasonality

variable to the training dataset captured by a sinusoidal variable:

s¼ð1þ sinðð2∗π ∗NÞþ3
2
πÞÞ=2, ð2Þ

where N¼ n=365 is the normalized day of year.

The USGS time series dataset had overlapping periods between

both the LSU and Gybe datasets and was used to build a consistent

training dataset. Several preprocessing steps were performed when

combining the datasets. First, the USGS dataset was broken into sub-

sets whenever a data gap was greater than 3 h, and gaps less than 3 h

were filled in by linear interpolation. Next, we smoothed the USGS

data records to remove digitization noise. Data reported by

USGS contain three significant digits. When raw time series data are

plotted, there are small visible jumps in the data (‘digitization noise’),
which are artefacts of the effective digitization of the supplied data.

To smooth the data, we used a moving mean filter with a window

length of 12 h.

F IGURE 3 Calibration function mapping LSU measured total
suspended solids (TSS, mg/L) to the USGS measured turbidity (FNU)
at Baton Rouge, LA. There are 131 contemporaneous data samples

between 2016 and 2018.

F IGURE 4 (a) Time series of LSU nitrate values measured from lab assays compared to an in situ nitrate gauge installed at Baton Rouge, LA
(USGS 07374000). (b) The 1-1 plot comparing nitrate values showing that despite the two different measurements techniques, both datasets are
consistent (with a correlation coefficient r2 ¼0:98) and can be combined to extend the nitrate time series.
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Processed USGS turbidity and nitrate data were then matched to

all LSU and Gybe data within a 1-h time window, and this training

dataset was then used to estimate correlations between the input var-

iables (turbidity, chlorophyll-a concentration, seasonality and possibly

discharge) and the target variable, nitrate-plus-nitrite concentrations.

As is common with hydrologic datasets, the training data were con-

centrated at the origin, so a Log (Base 10) transform was applied to

the turbidity, chlorophyll-a, discharge and nitrate-plus-nitrite quanti-

ties before estimating correlations. Our final step before function fit-

ting was to normalize the data to aid with numerical estimations. All

the training time series data are inherently positive. So instead of cen-

tring on the mean, we normalized the data records to a magnitude of

one with, NðxÞ¼ x=maxðxÞ.

2.7 | Model fitting

Using the normalized training dataset, we then created spline models

to correlate nitrate concentration to the contemporaneous values for

turbidity, chlorophyll-a concentration and seasonality. Specifically, we

used multivariate adaptive regression splines (MARS; Friedman, 1991)

as implemented in the Matlab ARESLab toolbox (Jekabsons, 2016).

While we think there may be more robust function-fitting methods,

such as neural nets, that we will explore in future work, we chose to

use spline models, in part to aid with the presentation and interpreta-

tion of our surrogate modelling method. The spline model-fitting pro-

cess consists of a forward operation, which finds knot locations and a

backward pruning step that reduces model size, making final models

as parsimonious as possible and easier to interpret. Additionally, we

created correlation models with the addition of the discharge variable,

because we wanted to compare model performance between models

restricted only to satellite data and models augmented with commonly

available USGS water quantity data. Typical training parameters

started with cubic splines with a limit of 100 basis functions, which

were reduced to approximately 50 after backward pruning.

All inputs to a model were evaluated with both training data and

satellite-derived input products for turbidity and chlorophyll-a

(Sentinel-2). As a simple metric for the quality of the fits, we examined

variation about the one-to-one line between the target and predicted

nitrate concentrations values (a simple linear regression) and reported

an (r2) correlation coefficient as an indicator of the relative quality of

a model fit. Finally, the USGS dataset was also used to vicariously cali-

brate turbidity derived from Sentinel-2. We estimated that a linear

multiplier of 0.96 brought them into better correspondence. Because

there is no in-water chlorophyll sensor at the USGS gauge, we were

not able to vicariously calibrate the Sentinel-2 derived chlorophyll-a

product.

3 | RESULTS

To provide context for the surrogate modelling results, consider the

example imagery and data plots in Figure 1. The centre image

(Figure 1b) shows a clear Sentinel-2 imagery of Baton Rouge from

F IGURE 5 A schematic of
processes modulating nitrate
concentrations in a river:
(a) assimilation by phytoplankton
(biological uptake) leading to a rapid
decrease in nitrate concentrations and
(b) land run-off increases sediment
concentrations and hence turbidity,
presumably proportional to nitrate
concentrations (particularly in
agricultural regions) leading to an
increase in river nitrate
concentrations.
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18 October 2017. The deep green of the MR indicates a high chloro-

phyll content in the water. The right image (Figure 1c) is from

31 January 2018. Conversely, the brownish colour of the water indi-

cates a large amount of suspended solids. The remote sensing imagery

is used to translate these colour variations to estimates of target prod-

ucts (e.g., chlorophyll-a concentrations or turbidity).

As illustrated in Figure 5, our hypothesis is that nitrate

concentrations can be modulated by both sediment and chlorophyll-a

concentrations due to agricultural run-off and phytoplankton assimi-

lation, respectively. Figure 5a illustrates how phytoplankton assimila-

tion can decrease nitrate concentrations, while turbidity can increase

nitrate concentrations (Figure 5b). Other recent work found these

relationships to hold in the homogenous waters of the Kansas River

where a data-driven model was demonstrated both these processes

modulating nitrate concentrations. Specifically, it was shown that, rel-

ative to variations in sediment concentrations, the assimilation of

nitrates is nonlinear (Tufillaro, 2023). Increases in chlorophyll

(an indicator of phytoplankton abundance) led to a sharp decrease in

nitrates, and the model was able to track the summer and fall boom-

and-bust cycle of phytoplankton blooms, which caused oscillations in

nitrate concentrations. Unlike the Kansas River, the Mississippi has

very heterogenous source waters. However, we hypothesize that we

could see a muted version of the modulation of nitrates by sediments

and phytoplankton reflecting process in Mississippi itself or from

more homogenous upstream source waters which get diluted by mix-

ing with other source waters. Figure 6 shows a simple spline model

of the LSU dataset, which appears to support this hypothesis. A

response surface fitting the point cloud for input variables of turbid-

ity and chlorophyll-a concentration, and an output of nitrate

concentration, shows an increase in nitrate concentrations at low

chlorophyll concentrations and rising turbidity, while nitrate concen-

trations appear to fall rapidly with increasing chlorophyll-a concentra-

tions at lower turbidity.

As stated in the methods, we used multivariate splines to esti-

mate the nonlinear response surface generated by the training set

with possible input variables of turbidity, chlorophyll-a concentration,

seasonality and discharge. Specifically, we started with linear splines,

and the main tuning parameter we adjusted was the initial starting

value for the number of spline knots which effectively controls the

model size (values range from 1 to 100 or a maximum value of

approximately 1/10 of the training set). After optimization, the model

typically had about 50 parameters.

While we experimented with models using different sets of input

variables and model parameters to estimate models that both satisfy

low errors on the training set (as indicated by correlation coefficient

r2), the best model performance was achieved with the full training

dataset and a complete set of input variables (seasonality, discharge,

turbidity and chlorophyll-a concentration), which were nonlinearly

regressed to the LSU/USGS nitrate-plus-nitrate concentration.

Figure 7 shows the one-to-one plots and correlation coefficients

generated by two different training sets. The use of a discharge vari-

able regressor improved the validation test set (r2 ¼0:55, Figure 7a;

r2 ¼0:65, Figure 7b). Figure 7c indicates that the surrogate model

developed using the terrestrial training set has utility for satellite-

derived turbidities and chlorophyll-a inputs as well, as indicated by a

correlation coefficient of r2 ¼0:42. Though this is a modest correla-

tion, we expect that the result can be significantly improved as more

satellite data imagery becomes available leading to improved vicarious

calibration estimations between the satellite data products and the in

situ measurements, as well as improvements to the atmospheric cor-

rection processing.

To test the hypothesis of the spatial extendibility of surrogate

models for nitrates, we used the spline surrogate data model created

for Baton Rouge, LA, to estimate nitrate values at the USGS nitrate

gauge at Natchez, MS, about 140 km north of Baton Rouge. As a first

step, we check for any correlations seen at these two sites based on

the USGS in situ nitrate sensor data. Figure 8a shows the time series

of nitrate concentration from September 2022 to January 2022. Note

that the Natchez nitrate sensor only came online at the end of

September 2022 and also has data gaps in November and small gaps

(e.g., mid-January) later in 2022. The Baton Rouge nitrate sensor has a

large gap also in September. Thus, the only overlap between all three

datasets during 2022 is a short period at the end of September. Com-

paring sensor signals at these two sites, we see that the Baton Rouge

sensor time series clearly lags the Natchez sensor time series

(Figure 8a). We estimate this lag as ≈63h by cross correlating the

two time series. This translates to a mean current of 2.2 km/h assum-

ing a 140-km distance. Historical averages for the MR velocity range

between 1 and 5 km/h from the headwaters to the mouth near New

Orleans, Louisiana. After adjusting the time series by 63 h, the nitrate

values at both sites are in good one-to-one correspondence

(Figure 8b), with the nitrate concentration at Baton Rouge showing

F IGURE 6 A spline regression of the point cloud from the LSU
dataset with input variables log10 of turbidity and chlorophyll-a and
output log10 of nitrate concentration.
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approximately 9% lower nitrate values than at Natchez. The cause of

the difference (such as dilution, nutrient consumption or differences

in calibration constants) has yet to be determined.

The results of applying Baton Rouge surrogate data model to

nitrate values derived from Sentinel-2 imagery at Natchez, MS, is

shown in Figure 9. From October to January 2022, there are 11 satel-

lite retrievals (clear satellite images over Natchez, MS), and though

there is not enough satellite matches to date to make a statistical eval-

uation, the data trend does show an apparent correlation between the

model predictions and the rise in nitrate values measured by

the USGS gauge. We note that there are underestimations and over-

estimations at dates in the first half of December which might be

explained by a turbidity bump that is not well correlated with data in

the training set.

F IGURE 8 (a) Time series of
NO2þNO3 at Natchez, MS, and
Baton Rouge, LA (no time delay).
(b) The one-to-one map of the
time series at Natchez, MS
(delayed 63 h), and Baton Rouge,
LA, showing a linear relation with
a 9% decrease in concentration
downstream between the two
USGS in situ nitrate sensors.

F IGURE 9 Time series of NO2þNO3 at
Natchez, MS, compared to values predicted
from remote sensing using a regional model
trained on data from Baton Rouge, LA.

F IGURE 7 One-to-one maps for measured values of NO2þNO3 and the surrogate model predictions. The relative quality of the model is
indicated by the correlation coefficient r2 with r2 ¼1 indicating a perfect correlation and r2 ¼0 indicating a correlation no better than an estimate
of the mean value of the training set. (a) Surrogate model results for a validation training data using all the input regressors: seasonality, discharge
and turbidity and chlorophyll-a, and the target variable is nitrates plus nitrates. (b) Surrogate model results for a validation training set using only
input regressors for seasonality, turbidity and chlorophyll-a. (c) Surrogate model results for a test set using inputs as seasonality, discharge and
Sentinel-2 (satellite-derived) product values for turbidity and chlorophyll-a concentrations.
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4 | DISCUSSION

We successfully applied a surrogate modelling approach that used

remote sensing data to estimate nitrogen concentration in the well-

mixed waters of the Lower MR. We also found that we were able to

use our model and satellite-derived optical data parameters to suc-

cessfully estimate nitrogen concentrations 140 km upstream from the

original gauging site. While there is much room for improvement in

the model, our results agreed with earlier work in the Kansas River

(Tufillaro, 2023).

There are two types of predictions implicit in this modelling

approach, temporal and spatial. As discussed above, temporal predic-

tion is best handled with a state space (dynamic) model, which is not

practical in this instance because of the sparse and irregular sampling

available from remote sensing data. The fact that a limited degree of

temporal prediction is possible, based on historical data and static

modelling, is a bit surprising. The temporal prediction is presumably

based, in part, on repetitive seasonal (e.g., storms) and land use

(e.g., fertilizer application in the spring) patterns, though this is just a

hypothesis at present, but there is evidence for this hypothesis in the

homogenous source waters contributing to the Mississippi

(Tufillaro, 2023). However, a spatial model prediction of water param-

eters at an associated temporal instance (i.e., adjusted for Lagrangian

transport) is not unexpected, particularly when there are minimal new

inflows along the reach. Indeed, we expect that the spatial correlation

would be even better if the model was able to utilize contemporane-

ous hyperspectral data from the late Fall and Winter of 2022 at Baton

Rouge, which is missing only due to an unexpected interruption in the

in situ sensor operations.

The importance of a suitable choice of regression variables is also

illustrated in this study. The higher correlation coefficient (r2) for

models with discharge (Figure 4) we hypothesize is due to the fact

that the discharge (and seasonality) variables help spread out the input

space so that the variance in the mapping to the output space is

lower. Mathematically, the map from the input space to the output

space is subject to ambiguity due to overlapping data clusters; how-

ever (assuming some deterministic correlations between the vari-

ables), it is possible to reduce the output variance by different

combinations of input variables and transformations of those vari-

ables. This more geometric perspective on modelling generally goes

under the rubric of manifold learning (Bachmann et al., 2005).

In summary, this study advances previous work on surrogate

modelling of nitrates in river in two directions. First, we illustrate

how the use of nonlinear fitting functions can extend the toolkit for

modelling correlations between key environmental parameters, such

as discharge, turbidity and nitrates. Second, we are suggesting that

the use of remote sensing and surrogate data correlations provides a

tool for gauging the spatial variations of nutrients, and other biogeo-

chemical parameters, that are not directly accessible by visible spec-

troscopy. This second conclusion is not a large leap from the current

use of surrogate methods that correlate lab samples to in situ sen-

sors. Indeed, a primary reason for the development of ocean colour

satellites and algorithms is specially to gauge global carbon up take

by ocean processes. The primary target variable is not chlorophyll-a

concentration in that case but primary production. What we are sug-

gesting here is using remote sensing for similar applications on a finer

spatial scale.

This study also demonstrates that monitoring of outcomes is

increasingly possible in conservation (Rissman & Smail, 2015). Conser-

vation organizations, including nongovernmental and governmental

organizations, most often report on outputs (e.g., acres conserved and

miles of buffers installed) rather than outcomes (e.g., land cover

and water quality) (Rissman & Smail, 2015). The Government Perfor-

mance and Results Act of 1993 (updated 2010) requires federal agen-

cies to report results (Frederickson & Frederickson, 2006, as cited in

Rissman & Smail, 2015). Yet, agencies face data limitations and techni-

cal challenges when it comes to reporting outcomes. While these

results are promising, we also acknowledge that multiple data sources

and approaches will likely be important for assessing progress towards

policy goals.
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