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A modeling method that allows one to rapidly build da-
ta driven models for nonlinear components is discussed. The
models are constructed from input/output time domain data
and their \embeddings". The notion of models built from em-
beded data is described in the Taken's Embedding Theorem
and has been extensively explored for modeling autonomous
systems in the physics liteature. The authors extend these re-
sults to nonautonomous systems by creating tools that allow
engineers to rapidly build models for driven nonlinear com-
ponents. These models can be used in simulation, process
control, diagonostics, and sensor calibration.
We present the results of applying nonlinear modelling

techniques to the modelling of measurements taken from a
Nonlinear Network Measurement Systems (NNMS). A com-
parison is made between reconstructed polynomial models
and radial basis models.

I. INTRODUCTION

This paper describes a dynamical systems approach to

nonlinear system identi�cation. A nonlinear system or

component typically is not well described by a (linear

theory) transfer function [1] so a new approach is needed

for building data driven models for nonlinear systems.

Some methods that have been developed include Volterra

Series, neural nets, and cluster weighted models to name

a few [2].

A dynamical systems approach to \black box" or \be-

havioral modeling" was �rst suggested by Casdagli [3].

Using time domain input/output or scattering data an

attempt is made to embed the orginial data in a higher

dimensional space, built from transforms of the original

data of suÆcient dimension so that the determinism of

the dynamical system is recovered. These methods have

been developed for data in the time domain and are suÆ-

ciently di�erent from the typical linear system frequency

domain techniques that we begin with some background

material before reporting results with experimental data.

This approach to nonlinear system identi�cation is

sometimes called \Dynamic Reconstruction Theory [4]"

and begins with a return to the state space representation

_x = f(x(t); u(t)) y(t) = h(x(t)) (1)

or their numerical version of di�erence equations,

xn+1 = f(xn; un) (2)

In these equations f; x; u are typically vectors and u(t)

is the input, drive, or stimulus, x(t) is the state, and

h(t) is a measurement function. Attempts to build data

state space models appear hard on at least two counts:

�rst, without any speci�c form for a model the relevant

dynamical variables x appears to be unknown, and sec-

ond, even if we know what variables are needed to be

included, they still may not be accessible to experimen-

tal measurements. Both of these issues, essentially the

nonlinear order, or dimension of the model, and model

selection and calibration are discussed below.

A simple approach to nonlinear modeling in the time

domain could begin by plotting the input and output of

on a graph. Next we could create a function from the

stimulus u(t) to the the response y(t),

y(t) = F [u(t)] (3)

but this function might not be unique. The key idea of

dynamic reconstruction is to embed these variables to re-

solve this indeterminancy by building a function not just

with y(t), but also transforms of y, for example its numer-

ical derivatives. An \embedding" is a map that places an

\m" dimensional manifold, in this case a one-dimensional

curve, in an \n" dimensional space. A polynomical model

then would be of the form
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y(t) = a0 + a1u+ a2 _u+ a3u _u+ a4u
2 + a5 _u

2
: : : (4)

the unknown coeÆcients (a0; a1; a2; :::) can be deter-

mined by least squares. Ploting the embedded trajectory

in the enlarged phase space can untangle and remove the

indeterminacy. This idea can also be applied to di�erence

equations,

f(n+ 1) = F [f(n)] (5)

and in e�ect create a numerical approximation for the

di�erential equations generating the 
ow.

Due to a theorem of Takens (with an extension to the

driven case by Stark [5]) these embeded models are dif-

feomorphic to the dynamics of the original system. This

means that there is a continuous and di�erentiable map

from the original system trajectory (say generated by my

best �rst principles model for the system) to the new em-

beded system created from the measured variables of suf-

�cient dimension. In particular, deterministic prediction

is possible from an embeded model which will mimic the

actual dynamics.

Thus, embedding opens the way toward a general solu-

tion of extracting black box models for the observable dy-

namics of nonlinear systems directly from input/output

time series data. It can solve the fundamental existence

problem, however, the gulf between these theoretical re-

sults and practical implementation is wide.

Practically, the components behavior is described by

embedding both the inputs and outputs in the form

z(t) = G[y(t� �); y(t� 2�); :::; y(t� l�);

u(t); u(t� �); :::; u(t� (k � 1)�)] (6)

where G is �tted to the data using nonlinear modeling

methods such as global polynomials, neural nets, or ra-

dial basis functions [2]. The form of the equations shows

a \lag" embedding with a time delay � , input lag dimen-

sion k and output lag dimension l, though in practice we

�nd that better quality models can often be built using

other embeddings such as linear transforms, integral and

di�erential transforms, and wavelets to help bring out

the salient dynamical features in the data.

Given the above model form, the problem now reduces

to a number of technical issues such as: Determination

of the dimensions (k and l), determination of lags (�) or

other forms of embeddings and embedding parameters,

determination of model class G, and �tting the model

parameters, model validation, and design of excitation

signals (where possible) for a given model/signal class.

It might be helpful to point out that this relation be-

tween a continuous dynamical system and an embedded

model built from time-delayed input/output signals can

be made explicit in the case of linear systems. The details

for an algorithm are described in a book by Franklin [6],

which shows how to go from the linear system with ma-

trices A, B, and C to a model based only on delayed

variables. Unfortunately, no explicit constructive proof

exists for nonlinear systems.

For embeddings built from a time delay lag � ,

y(t) = G[y(t� �); :::; y(t� l�); u(t); :::; u(t� (k � 1)�)]

(7)

we can use an extension of the algorithm for the the-

ory of embedded autonomous systems known as \False

Nearest Neighbors [7]". Basically, we �nd the smallest

\k" and \l" by creating a statistic that checks if vectors

close in a delay space are also close in a delay space of

greater dimension [8]. If they are not, then we have false

neighbors and G is not single valued. This diagnostic is

independent of G.

For models built from time delays we need to estimate

� . Again, we �nd that a diagnostic from autonomous

systems theory suÆcies. We use either the mutual infor-

mation or the �rst zero of the autocorrelation function in

determining � [7]. In cases where there is a single domi-

nant frequency band, both of these diagnostics often turn

out to be about one-quarter of the dominant frequency,

or in other words, � is chosen so that the delay variables

are decorelated as much as possible.

In practice, though, we �nd that these diagnostics are

not nearly so useful as software tools that allow us to

rapidly build and test models with di�erent combinations

of embedding functions and parameters.

Once we have a suitable embedding, we next turn to

function approximation of G. We try to keep things here

as simple as possible. First we usually try a global poly-

nomial �tted by least squares. For circuit applications

we have had some success with radial basis functions

y = �+ �u+

NX

i=1

!i�(jjci � ujj) (8)

that use optimization algorthims which can automati-

cally determine the number and placement of the basis

functions [9,13].

Again, with good software tools we can rapidly test out

di�erent basis functions and model structures. Finally,

for validation, we usually just do out-of-sample testing

with some simple metrics for the average and maximum

errors.

II. NNMS RESULTS.

We develop a nonlinear black box behavioural model of

a microwave ampli�er by reconstructing the model using

measurement data from a NNMS. Details of the test set-

up are found elsewhere [10]. The test apparatus provides

band limited frequency domain output which we convert

to the time domain for the analysis. Time domain out-

puts and the stimulus usually consists of multiple peri-

odic signals.
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The goal is to produce a model which accurately pre-

dicts the currents given past and present values for the

voltages. The device is a lattice-matched InP HEMT

with 0.2 �m gate length and 100 �m gate width, fabri-

cated at IMEC, Belgium.

The data consists of 30 sets of NNMS measurements.

These data sets are split into two groups of 15 measure-

ments at di�erent DC bias points. The 15 data sets are

further split by a parameter indicating the phase di�er-

ence between the two incident voltage waves. There are

256 data points in each of the 30 data sets.

The aim is to reconstruct models using some (or all)

of the data with the property that the models test well

on the other data sets. Initially we will attempt to re-

construct a global model using all of the data (actually

only 15 of the data sets). Then we attempt to construct

accurate models using only a subset of all the data avail-

able.

III. POLYNOMIAL MODELS

In this section we will reconstruct polynomial models.

We assume the data has been embedded in an appro-

priate dimension with a suitiable lag. As mentioned in

the introduction there are methods of �nding a good di-

mension [11,12,8]. The lag is chosen by examining the

autocorrelation function applied to the input data. We

found that a lag of 9 and an embedding dimension of 2

for each input sequence was suitable.

A. Modelling using all data sets

We reconstruct a polynomial model using all the data

sets at one bias point. The phase di�erence parameter

and the bias point is ignored, and so the inputs are just

the voltages at ports 1 and 2 with their corresponding

lagged value. The outputs are the currents at ports 1

and 2.
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FIG. 1. The �t and errors of a linear model for the gate
current 1.
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FIG. 2. The �t and errors of a linear model for the drain
current 2.
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FIG. 3. The �t and errors of a quadratic model for current
1.
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FIG. 4. The �t and errors of a quadratic model for current
2.
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FIG. 5. The �t and errors of a cubic model for current 1.
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FIG. 6. The �t and errors of a cubic model for current 2.
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FIG. 7. The �t and errors of a quartic model for current 1.
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FIG. 8. The �t and errors of a quartic model for current 2.
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FIG. 9. The �t and errors of a quintic model for current 1.
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FIG. 10. The �t and errors of a quintic model for current 2.
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FIG. 11. The �t and errors of a 112 parameter model for
current 1.
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FIG. 12. The �t and errors of a 114 parameter model for
current 2.

In Figures 1{ 10 we show the results of reconstructing

polynomial models of order one through to �ve. Table I

gives the root{mean{sqare errors (divided by the stan-

dard deviation of the data to be predicted) of each of

these �ts. The modelling errors decrease as we increase

the order of the polynomial as they should but it is inter-

esting to note that there is a marked improvement when

a cubic model is compared to the linear model. This

suggests that the data is best modelled using nonlinear

methods.

Model Current 1 Current 2

Linear 0.4491 0.6882

Quadratic 0.2799 0.4144

Cubic 0.2373 0.1935

Quartic 0.1966 0.1056

Quintic 0.1421 0.0629

TABLE I. This table shows the error of the training �t
using di�erent orders of polynomials. The error is calculated
to be the rms error divided by the standard deviation of the
data to be predicted. We observe that the errors decrease
as we increase the order of the polynomials. This is to be
expected since we have increased the number of parameters
to be �tted.
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To investigate this further we shall use the subset selec-

tion and description length ideas of Judd and Mees [13]

to perform the parameter estimation. The highest or-

der we allow our polynomial models to have is �ve. The

results are shown in Figures 11{ 12 and the modelling er-

rors are 0:1423 for current 1 using a 112 parameter model

and 0:0630 for current 2 using a 114 parameter model.

We notice that the description length method returned

a model of many parameters indicating a nonlinear re-

lationship between the voltages and currents. We also

observe that both models used less parameters than the

126 available for a quintic polynomial model with com-

parable �tting errors.

B. Modelling using a few of the data sets

The results of the previous section suggest that it is

appropriate to use nonlinear methods to describe the da-

ta. The work lacked an investigation of how general the

reconstructed models were. That is, can the reconstruct-

ed model test well on other data sets. To study this we

reconstruct a polynomial model as above but use only a

few of the data sets to perform the training step. We

then test the ability of the models to generalize to other

data sets.

Recall at one bias point we have 15 data sets distin-

guished by the phase di�erence of the incidence voltages.

We will label these data sets z1 through to z15. In the

training stage we will use the data sets labelled z1, z4,

z7, z10, z13 and z15. In the testing stage we will use the

data sets labelled z3, z6, z9 and z12. As before we use

the subset selection algorithm to reconstruct a polyno-

mial model with maximum order of �ve. The lags and

embedding dimensions also remain the same.

In Table II we show the results of training and testing

a polynomial model on the above data sets. We see that

the models test well on the unseen data.

Current 1 Current 2

No. of Parms 112 108

Fit Error 0.1111 0.0452

z3 Test 0.0740 0.0452

z6 Test 0.0915 0.0439

z9 Test 0.0794 0.0467

z12 Test 0.0874 0.0429

TABLE II. The modelling and test errors of a polynomial
model reconstructed using subset selection and description
length. The training data used 6 data sets di�erent from the
4 test data sets.

For comparison we have applied some radial basis mod-

elling techniques to the same training and test data set-

s used above. Table III shows the preliminary results.

We see similar results to the polynomial models but the

errors are a bit higher. A more concerted e�ort could

improve these results.

Current 1 Current 2

No. of Parms 24 52

Fit Error 0.3122 0.1542

z3 Test 0.2650 0.1569

z6 Test 0.2659 0.1776

z9 Test 0.2345 0.1458

z12 Test 0.2289 0.1273

TABLE III. The modelling and test errors of a radial basis
model reconstructed using subset selection and description
length. The training data used 6 data sets di�erent from
the 4 test data sets. We see that the models generalize in
the same way as the polynomial models albeit with a higher
overall error.
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IV. SUMMARY

In this preliminary report we have shown that measure-

ments of a InP HEMT from a nonlinear network measure-

ment system can be adequately modelled using nonlinear

black{box behavioural models. We have demonstrated

that the data we study is nonlinear and that only the

present and past voltage values are needed to predict the

present currents. The models were shown to test well on

data sets other than those used to reconstruct the mod-

els. A brief comparison between polynomial models and

radial basis models was carried out. We saw that both

classes of models had similar generalisation properties

but that overall the polynomial models had better test

error performance. We limited this report to the study

of data from one bias point.
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