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Abstract

We reconstruct nonlinear models of an Bi{Polar Juntion transistor from time

domain input{output data. We show that for the drive signals considered here

| amplitude modulated signals | the models are transportable.

I. INTRODUCTION

We attempt to reconstruct transportable nonlinear models of electronic device compo-

nents. The nonlinear models are reconstructed using time domain input{output time series

data. The goal is to produce a model which given the values of present and past voltages

(and perhaps past currents) accurately predicts the values of the present currents.

We are interested in developing such models because it is becoming apparant that today's

circuit simulators are failing to provide accurate simulations of electronic devices which are

operated in regimes where memory, heating and nonlinear e�ects play an important rôle. A

reason for this is because the models which underpin the simulators are typically based on

linear theory, and those models that are nonlinear are subject to arti�cially imposed cut{o�s

to avoid divergence.

We believe that there is scope for the use of nonlinear behavioural models reconstructed

from actual measurement data in circuit simulators. Such models may be better able to

capture the behaviour of a device when subject to signals which cause nonlinear responses

due to any factors.
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In order to convince the \circuit simulator community" of the potential of such models we

must �rst show that behavioural models can match the performance of standard models in

places where standard models do well. We will therefore restrict our study here to one device

component namely the Ebers{Moll model of a Bi{Polar Junction Transistor (BJT) [11].

A circuit diagram of the Ebers{Moll models is shown in Figure 1. The model is a nonlin-

ear model due to the capacitors and current element being described by nonlinear functions.

The behaviour of the BJT model is studied using Kircho�'s Laws and by integrating the

resulting di�erential equations. We are interested in reconstructing nonlinear models from

the time series data obtained from the BJT model. We require our models to predict the

output current I
c
given present and past values of V

be
| the base{emitter voltage | and

Vce | the collector{emitter voltage.
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FIG. 1. Ebers-Moll BJT model.

A good summary of the device behaviour is given by the dc v{i characteristics of the

device. The characteristics of the Ebers{Moll model are shown in Figure 2. This �gure is

obtained by providing �xed dc voltages for Vbe and Vce | so{called biasing. These voltages

are referred to as bias points or operating points of the device.
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FIG. 2. The v{i characteristics of the BJT model.

An important property required of our black{box models is what engineers refer to as

transportability. That is, can a (nonlinear) model reconstructed using data at one bias point
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adequately describe the behaviour of the device at a di�erent bias point. This second bias

point may lie on the same characteristic curve as the �rst, or lie on another characteristic

curve.

A second transportability question is how do models reconstructed using data generated

(measured) at one bias point subject to one drive signal generalise to data produced using

other drive signals.

In order to test transportability an important problem is the design of a drive signal

which can excite the device to fully explore its response behaviour. The design of such a

drive signal goes hand{in{hand with the question of transportability. The design of such

a \universal" drive signal is an open question. Indeed it may not even be possible since a

device can be used in all manner of ways. Perhaps the best one can hope for is to design a

\best" drive signal for a given application.

In earlier work we developed a method to reconstruct transportable behavioural models

across bias points subject to one class of drive signal. In this report we develop transportable

models over di�erent classes of drive signal and across bias points.

We will consider amplitude{modulated (AM) drive and test signals. We will also only

study transportability along one characteristic curve to show the potential ot our methods.

The training data will therefore consist of applying an AM signal at Vbe. The AM signal is

V = (1 +m sin(!
m
t))V

c
sin(!

c
t): (1)

We will apply a one{tone signal at Vce. This has the e�ect of moving the AM signal back

and forth along a characteristic curve.

II. NONLINEAR MODELLING

The nonlinear models we will reconstruct have the following form

Ic(t) = F [Vbe(t� (k � 1)� ); . . . ; Vbe(t);

Vce(t� (k � 1)� ); . . . ; Vce(t)] (2)
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where � is a time{delay lag and k is the number of past voltages used. The classes of

nonlinear models we reconstruct will be polynomial models and radial basis function models.

For example, with k = 1 a second order polynomial will have the following structure

Ic(t) = F [Vbe(t); Vce(t)]

= a1 + a2Vbe(t) + a3Vce(t) +

a4V
2

be
(t) + a5Vbe(t)Vce(t) + a6V

2

ce
(t) (3)

The parameters ai are determined from the training data. A radial basis model will have

the form

Ic(t) = � + �1Vbe(t) + �2Vce(t) +
NX

i=1

!i�(kci � (Vbe(t); Vce(t))k) (4)

where the parameters to be estimated are �, � and !i. The ci are called centres and they

can also be estimated. We will explain the method we use later. The function � is typically

a Gaussian and this is what we will use. So,

�(r) = exp (�
1

2�2
r0r):

� is also another parameter to be speci�ed (estimated) and we will explain our choice later.

We remark that (2) is a static approximation since there is no feedback of the currents

Ic(t). If we include past currents as well as voltages in (2) then the model will be a dynamic

model. We will come back to feedback models later.

An important consideration of nonlinear modelling arises because of the \curse of dimen-

sionality". That is, how to prevent an explosion of the number of parameters to be estimated

as dimension increases and model complexity increases, e.g., in high dimensions higher order

polynomials have many parameters. For radial basis models the \curse of dimensionality"

is less severe but the problem of the number of centres to use exists, and furthermore the

problem of where the centres should be is an issue.
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An extremely e�ective method recently developed by Judd and Mees [12] uses description

length ideas in an attempt to reconstruct radial basis models while controlling model size |

number of centres | and choosing the \best" location for the chosen centres. Description

length is their preferred criterion for comparing di�erent models but the models can equally

be compared by performance on a test data set. The best model is the one with minimum

description length or best test set prediction performance.

Judd and Mees' method is not restricted to radial basis function approximations. It can

be readily adapted to polynomial function approximation. The usefulness can be explained

as follows. Suppose that the current Ic in (3) can be predicted accurately by using only

the voltage V
ce
(t). That is, the voltage V

be
(t) is unnecessary. The parameters a

i
can be

estimated by �nding the least{squares solution to

Ic = 	A

where the columns of 	 are written as [1 Vbe Vce V
2

be
VbeVce V

2

ce
]. If terms involving Vbe are

unnecessary for prediction of Ic then the method of Judd and Mees would (probably) select

columns 1, 3 and 6 from 	 to perform the least{squares estimation of the parameters ai.

Clearly, in addition to �nding the correct relationship we have also reduced the number of

parameters to be �tted and circumvented the \curse of dimensionality" somewhat.

The method of Judd and Mees is a subset selection algorithm based on sensitivity analysis

from Lagrangian theory. The columns of 	 are the elements of a candidate set and the

algorithm picks the best subset of columns to describe the data. The size of the subset can

be controlled by a description length criteria or a test error criteria.

In radial basis function approximation the columns of 	 correspond to di�erent centres

and even di�erent basis functions with di�erent scales. When the algorithm selects the best

subset in this case it is also selecting the centres in the best location.
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III. RESULTS

A good test to study the transportability of a model is to see how well the model matches

the dc{characteristics of the actual device. This test will give a guide as to what bias points

the model is applicable. It is unlikely that the dc{characteristics will be well approximated

for bias values outside of the region of the training data. This motivates the search for a

drive signal which will excite the device to explore as much of its response space as possible.

Initially we will demonstrate that nonlinear models of the BJT can be reconstructed

using the above methods from time series data. We show that such models can then be

used to predict the behaviour of the BJT subject to simple drive signals at other operating

points thus illustrating transportability.

We will present the results of our study at three test bias points along various charac-

teristic curves. The training data along each curve is obtained by applying an AM signal

with (see (1)) m = 4=5, Vc = 5V , !c = 5GHz and !m = 50MHz at Vbe. The signal applied

at Vce is a one{tone drive given by

Vce = Vmax sin(
N�

T
t); (5)

where Vmax = 20V , T = 1e � 6s and N = 100. We integrate from 0s to T sampling every

0:1ns so obtaining 10; 000 data points.

An operating point of the device is selected by adding a constant bias value to Vbe and

Vce. The bias at Vbe has the e�ect of picking a charateristic curve in Figure 2, and the bias

at V
ce
picks a point along this curve. The addition of a sinusoidal driving term at V

ce
has

the e�ect of moving backward and forward along the chosen characteristic curve. The AM

signal at Vbe has the e�ect of circulating the chosen characteristic curve. So, using such a

drive signal we are exciting the device across many bias points. We therefore expect that

a nonlinear model reconstructed using the above data will test well on data sets subject to

similar one and two tone driving at a variety of bias points thus illustrating transportability.

In Figure 3 we show the input{output time series obtained by setting Vbe = 3V and
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Vce = 2V . The test sets we will use are generated by applying a �xed dc voltage at Vce and

applying the AM signal above at Vbe.
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FIG. 3. Input{Output time series data.

To be edited

We will reconstruct radial basis models and polynomial models from the training data.

We embed each measured voltage in 2 dimensions with a lag of 10. (We adapted the methods

of Rhodes and Morari, and Cao et. al) to determine the embedding dimension. The lag

was chosen by examining the average mutual information of the drive signals as well as the

autocorrelation function.)

The candidate centres for the radial basis models are chosen from the data, and we make

10 candidate centres available for selection. The maximum order allowed for the polynomial

models is four, and so there are 40 parameters which can be selected.

In Table I we show the results of reconstructing and testing radial basis and polynomial

models at three bias points on the characteristic curve corresponding to Vbe = 3V .
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TABLES

Model Model Error (5,19) (5,19) (5,19) (5,23) (5,23) (5,23) (5,31) (5,31) (5,31)

(bias) size percent 250 500 750 250 500 750 250 500 750

R (5,19) 16 0.13 2.69 0.14 3.73 115 178 251 254 384 553

P (5,19) 18 0.09 2.5 0.11 2.7 117 178 250 257 385 555

R (5,23) 27 0.08 142 226 333 1.17 0.11 1.23 167 253 364

P (5,23) 18 0.33 111 228 252 58 0.33 91 280 320 527

R (5,31) 30 0.06 427 678 997 230 354 498 0.71 0.05 0.92

P (5,31) 15 0.3 448 595 901 262 318 469 35 0.35 33

TABLE I. This table shows the results of modelling the transistor at three bias points with

radial basis function and polynomial aproximations. The training data is generated using an AM

drive signal and the test sets are data generated using simpler sinusoidal drives. The modelling

and test errors are given as percentages and are RMSE/STD(DATA) � 100 % .
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There are several things to be read from Table I. The �rst is to notice that nonlinear

models with a small number of parameters are reconstructed. We also notice that the

accuracy of the training �t is excellent with errors less that 1% and there seems no advantage

in reconstructing a radial basis model over a polynomial model.

The results of the test error calculations are also interesting. We notice that both the

radial basis models and the polynomial models generalise very well to test set generated at

the same bias point as the training data. We obseve that where test error performance is

good radial basis models appear to outperform the polynomial models we have recosntructed.

We do acknowledge, however, that we have not attempted to reconstruct a very complicated

polynomial model.

The generalisation to other bias points, however, is abysmal. This drop-o� in perfor-

mance is easily explained. The reason for such terrible results at di�erent bias points is

that this new data lies in a di�erent part of \phase space" than the training data. The

reconstructed models thus have no knowledge of this space beacause \they have not seen

it".

The above results suggest that to be able to reconstruct a nonlinear behavioural model

from data which generalises well, the data must be rich enough to explore as much of the

devices \phase space" as possible.

Model Model Error (5,19) (5,19) (5,19) (5,23) (5,23) (5,23) (5,31) (5,31) (5,31)

(bias,RR) size percent 250 500 750 250 500 750 250 500 750

R (3,5,5) 177 3.0 103 204 322 103 184 277 103 165 209

P (3,5,5) 27 10 103 233 334 96 211 324 96 183 284

R (5,11,4) 142 2.5 131 2.9 181 112 3.2 139 84 2.4 81

P (5,11,4) 26 3.1 482 3.3 607 386 2.1 476 294 1.2 307

R (8,10,5) 107 2.5 149 132 205 160 131 201 162 142 240

P (8,10,5) 27 2.2 1093 1033 2118 884 829 1622 635 602 1144
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TABLE II. This table shows the results of modelling the transistor along three characteristic

curver with radial basis function and polynomial aproximations. The training data is generated

using an AM drive signal and the test sets are data generated using simpler sinusoidal drives. The

modelling and test errors are given as percentages and are RMSE/STD(DATA) � 100 % .
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In Table II we show the results of modelling the transistor using data generated as above

along three di�erent characteristic curves. We notice that the size of the reconstructed are

much larger that those shown in Table I. This can be attributed to the fact that modelling

the dynamics along an entire characteristic curve is more complicated than modelling the

dynamics at one bias point.

The ability of the reconstructed models to reproduce the dc-characteristics of the device

is important. This could be considered a \�rst" test to perform in the sense that if the

dc-characteristics are poorly approximated at certain bias points then it is unlikely that the

ac-tests will be good at these points.

In Figure (4) we show the ability of the radial basis models of Table II to reproduce the

characteristic curve on which they were built. We see that the characteristics are adequately

reproduced in the areas where there was training data. Outside of these areas, however,

performance is severely compromised.
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model.
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IV. CONCLUSION

We have presented preliminary results of nonlinear modelling of an electronic device.

We have seen that if the operating (bias) point of the device is known a priori then an

appropriate drive signal can be designed to reconstruct a nonlinear model which can be

used to predict the behaviour of the device at that operating point.

If a more global model is required, valid over a wide range of operating points and test

signals then it is crucial to design a drive signal which produces a training set which explores

as much of the devices response space as possible. If such a drive is forthcoming then our

results suggest that it is possible to reconstruct an accurate nonlinear model.

In our investiagtions we have considered AM signals and we have seen that although such

signals are adequate for some purposes, reconstructing at one bias piont, characteristic curve

testing, they are lacking the complexity to deliver a \global" model. The consideration of

such signals, however, has highlighted the potential of nonlinear modelling methods to the

modelling of electronic devices but has also illuminated areas for further development.

There are two key questions which have arisen from this work. The �rst is the question

of what is a \good" drive signal to use which probes the rich response behaviour of the

device over a wide range of operating conditions. The design of such a signal is crucial if a

\global" model is to be produced from one data set. The second question which we have

considered brie
y is the problem of interpolating between many models reconstructed at

many bias points.

The two questions are intimately related since if the answer to the second question

suggests that a \global" can be reconstructed by interpolating models between operating

points then the design of an appropriate drive signal may be made easier.

It is also clear from this study that knowledge of the intended use of the device under

study in terms of operating points and likely drive signals is a crucial piece of information

best not dropped.
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