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Phase space reconstruction using input-output time series data
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In this paper we suggest that an extension of a procedure recently proposed by Waydari&hys. Rev.
Lett. 70, 580 (1993] for recognizing determinism in an autonomous time series can also be used as a
diagnostic for determining an appropriate embedding dimension for dfVieput-output”) systems. We
compare the results of this extension to the results produced by the extensions to the method of false nearest
neighbors put forward by Rhodes and Morffroceedings of the American Control Conference, Seattle
edited by The American Automatic Control Coun@iEEE, Piscataway, 1995and the method of averaged
false nearest neighbors by Cabal.[Int. J. Bifurcation Chao$, 1491(1998]. [S1063-651X99)12510-§

PACS numbd(s): 05.45-a

[. INTRODUCTION gue that the method of Waylaret al. [1] can similary be
extended to provide such a diagnostic.

In this paper we suggest that an extension of a procedure The outline of this paper is as follows: In the next section
recently proposed by Waylaret al. [1] for recognizing de- we describe the Wayland method for detecting determinism
terminism in an autonomous time series can also be used &% a time series, and explain why it can be used as a diag-
a diagnostic for determining an appropriate embedding dinostic for determining an appropriate embedding dimension
mension for driven(“input-output”) systems. We compare for phase space reconstruction. We reinforce our contention
the results of this new diagnostic with the results of twowith an example using data from the chaotic Lorenz system.
other diagnostics recently proposed in the literaf@g]. We then introduce our scheme for reconstruction using

The paper by Casdadit] is a common starting point for input-output time series data by extending the Wayland
many researchers when faced with the problem of applyingnethod. To illustrate our technique we apply it to data from
nonlinear dynamics techniques to the modeling of systemBuffing’s equation and to data obtained from a model of a
using input-output time series data. The main idea drawibipolar junction transistoBJT). We compare our results
from this paper is that an extended phase space can be neith those obtained from an implementation of the methods
constructed from the input and output time series. If we deof [2] and[3].
note the output time series lyt) and the input time series
by u(t) then an extended reconstructed phase space for non-

autonomous systems can be formed with vectors Il. WAYLAND METHOD

According to Waylanckt al.[1] a time series is said to be
z(t)=[y(t—(k—1)s), ... y(t—s),y(t), deterministic if the reconstructed vectors

ut—(1-12)s), ...u(t—s),u(t)], (1) X(t)=[yt—(k=1)s), ... y(t—s),y(t)]

wherek is the embedding dimension of the output time seriexan be modeled as the iteration of a continuous fundtidn
and| is the embedding dimension of the input time seriestest for continuity can be developed based on the fact that
We have assumed that the time defais the same for the points close together will map to points close together under
input and the output time series although this need not be tha single iteration of the map
case. In the following we assume that an appropriate time Let x, be a reference vector chosen from(t),t
delay has been found. An appropriate value for the time de=1,2, ... N, and letx;,X,, ... X, be them nearest neigh-
lay can be found using methods such as autocorrelffidn bors ofx, chosen fromx(t),t=1,2,... N. In addition, we
or mutual informatior{6]. In addition we will normalize all ensure that none of these points d@strongly temporally
time serieqto lie in the range—2 and 2) for reasons to be correlated. Ley,,y;, . .. ¥yn be the images of the vectay,
discussed later. and its neighbors respectively. If the data is deterministic
For a given time delay the problem is to design a diag-and correctly embedded we expect the translation vectors
nostic to find appropriate values ferand| from time series
data. Rhodes and Mordr2] have extended the false nearest
neighbor algorithm of Kennedt al.[7] to determinek and|.
More recently Cacet al. [3] have suggested an alternative
method by extending the work ¢®]. The work of[9] isin  to be nearly equal provided the near neighbors are within a
itself an extension of the false nearest neighbor methodmall region of phase space. Waylaatal. quantify this
called averaged false nearest neighbors. In this paper we ansight by computing the translation error
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4 y y y - - y - - - _ study how robust this prescription is to the observational
noise level in the data and the numipeof neighbors chosen
12f in the calculations.

r _.~': i IIl. INPUT-OUTPUT DIAGNOSTIC

o8k R The above diagnostic can be extended to input-output
P time series data in a simple manner. The scheme is essen-
tially the same but the method of determining nearest neigh-
bors is modified. The nearest neighbors of a vesipare
instead determined in the extended reconstructed space from
the vectorsz(t) [see Eq.(1)]. The vectorx, is associated
with a vectorz,. Let z;,2,, ... ,z, be the(decorrelatep
X nearest neighbors af. We denote byv; the images of these
e ¢ near neighbors. For ead),j=1,2, ... m we project down
2

26 3 85 4 45 5 55 6 to the “x” subspace, i.e.x;=Cz andy;=Cw; where C
Embedding dimension (k) picks out the parts of(t) constructed using the output time
, , series. We calculate the translation error as before with these
FIG. 1. Plot of (k) for various numbers of near neighbors, vectors.
— * — — 1 i
®-m=5, *-m=10, andx-m=20. We notice that a maximum of We note that the inputs can possibly be deterministic or
e(l.() oceurs a1k=.4 for.a” curves. We th.us Con.C|Ude t“.ﬁ:ll 'S8 " stochastic. For deterministic inputs continuity in input-output
suitable embedding dimension, which is consistent with known re- S ,
sults. space can be assured by an application of Taken s.theor(.am to
this extended phase space. The case of stochastic forcing is
" ) more subtle but results of Stast al. [8] can be applied. A
E _ 1 HVj —(v)l simple minded explanation of the scheme is based on the fact
rans m+1 < e ' that vectors close in reconstructed phase space subject to
similar inputs should end up in the same place.
where The choice of the near neighbors in this extended recon-
structed space may be dominated by closeness in recon-
. m structed phase space or closeness in the reconstructed input
(V)y=—= 2 Vvj. phase space. For example two vectors may be deemed close
m+1 =0 in the extended phase space because their distance apart in
phase space masks the difference in the inputs. The two vec-
This local translation error is extended to a more global meators although close in phase space could be subjected to
sure of translation error by choosig, random reference vastly different inputs thus compromising the translation er-

vectors fromx(t),t=1,2,... N. For each reference vector rors. To avoid this eventuality we suggest normalizing the
we compute an associatéq,,,s and then calculate the glo- output and input time series.
bal translation erroE=median€,ans)- Once again following the paper of Cat al. [3] we cal-

In addition to the embedding dimensidnand the time culate
delaysthere are two other free parameters. Thesd\arthe
number of reference vectors anmtthe number of near neigh- E(k+1])
bors. We will remove the parameti; by using all embed- e(k,l)= Bk
ded data points as reference vectors just like the extensions ’

in [2] and[3]. In so doing we will takeE to be the average of 1 istinguish between different values bofve choose the
Etrans rather than the mediait is thus a function of embed- . 1) for whichk+1 is a minimum. We also favor values of
ding dimension. Following Ca¢9] we will calculate the | " | \here |>k. For example ife(k,1) suggests two

quantity choices k,1)=(2,2) and k,I)=(1,3) say, we will choose
the latter. A reason for this choice comes from our interest in
e(K)= E(k+1) modeling electronic device componehi®] for the purpose
E(k) - of simulations. We believe a model with as little feedback as
possible, i.e., smak, should be more stable under iteration
The translation erroE(k) will generally decrease with in- than a model with largé.
creasing embedding dimension. Asincreasese(k) will
typically rise; however, there will be a marked change
decreasgin the slope ofe(k) when a suitable embedding
dimension is attained. This change is distinctive andkthe We present an example illustrating the effectiveness of
which it occurs is what we will choose as the embeddingthe method when applied to output time series data. The
dimension. There is even the possibility of an increase irputput data is obtained by integrating the chaotic Lorenz
E(k) for largek due to decorrelations in the embedded dataequations. For this example appropriate embedding dimen-
In this casee(k) will begin to decrease and the decrease insions are known from studies elsewhdsee for example
slope will correspond to a local maximum efk). We will  Abarbanelet al.[11]). We study how robust our prescription

IV. EXAMPLES
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FIG. 2. Plot of e(k) with m=10 for data sets corrupted with FIG. 3. Plot ofe(k,l) for I=1,...,5.@-1=1, *~|=2, x|
observational noise® =0%, *=5%, x=10%, 0=20% and+ =3, 0-1=4, and+-l=5. We see that choosirlg=2 andl=1 is
=40%. We see that the decrease in the slope(df) at k=4 a suitable and minimal choice for embedding the Duffing input-
persists for noise levels upto 10% but then degrades thereafter. output time series data.

is to observational noise in the data and the number of negy . values. We also notice that this value appears to per-

neighbors in the diagnostic. Eist with respect to the number of near neighbors used in the

We present two examples 1o illustrate the effectwene_ss 0 iagnostic. We have obtained similar results for even higher
our extension to the Wayland gcheme to accomodqte NPUL mbers of nearest neighbors, and so to reduce the number
output time series data. In the first example we consider datgf '

from Duffing’s equation. Once again we study the robustnes
of our method to observational noise on the input and output To see how robust the diagnostic is to noise in the data we

tlme_ series, and the number of near neighbors on the d'a%{dd observational noise at various levels. The noise added is
nostic. We also compare the results of our method to th%ero mean Gaussian with standard deviations of

resuits pro_duced by using the methods suggested by RhOdg%,lO%, 20%,and 40% the standard deviation of the clean
and Morari[2] and Caoet al. [3]. The second data set we orenz signal. In Fig. 2 we show how(k) varies form
study using our method is obtained from simulating a model‘ ' ’

of a bipolar junction transistaiBJT), the Ebers-Moll model ;10 on each of the n0||sy daia sets. f‘s t?e noise II;veI in the
[12]. ata increases we no longer see a local maximuik=a4.

All curves, however, show a decrease in their slopes at an
embedding dimesion of 4 although there is a graceful

figures we shall henceforth present only the results for

A. Output time series

The Lorenz differential equations are 1

u=o(—u+v), °r

08

V=Iru—v—uw,
07l

w=—bw+uyv, osk

—_

where foro=10, r =28 andb=$ chaotic solutions are gen- osf
erated. We generate time series data by integrating the Lo“’M_
renz equations using a variable step-size Runge-Kutte
method: matlab’esde23 routine, and output the coordi- 03r
nate every 0.01 time units after transients have diminished
(That is, we integrate long enough for the dynamics to
evolve on the attractorWe obtain a 10000 point time se- o1
ries, and determine a lag= 35 by choosing the first mini- $~: ) ) )
mum of the average mutual information functigi. 2 2 3 35 4

We apply the Waylanét al. diagnostic for different num- Embedding dimension (k)
bers of neighborsn=5, 10, and 20 and with a decorrelation  fiG. 4. Plot ofe(k,l) for 1=1,...,5. @—I=1, *~1=2, x—I
interval of 10. The results are shown in Fig. 1. We see thatat 3 o—_| =4, and+—I=5. We see that the effect of the noise has
an embedding dimension of 4 the slope efk) decreases been to increase the dimension suggested by the diagnostic. Exam-
and for all curves we actually obtain a local maximum. Thus,ining the figure we see that the embedding stratdg}) & (3,1) is
an embedding dimension of 4 is suggested consistent withuggested.

021
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FIG. 5. Plot of the percentage of false nearest neighbor$ for
=1,...5.0-=1, *~[=2, x-1=3, o-1=4, and+-1=5. We 1E
see that consistent with our diagnostic the method suggests embe Ie
ding with (k,1)=(2,1).

dropoff in performance for noise levels above 10%. Thus, E
despite the dropoff in performance the diagnostic appears to FIG. 7. Ebers-Moll transistor model.
be robust against the effects of high levels of noise.

10 000 point output time series by integrating the differential

B. Input-output time series equations and outputing the component every 0.05 time
The first example we use to study our method is Duffing’sunits after transients have diminished. The input time series
differential equation. This equation is given by is obtained by evaluating(t) every 0.05 time unit. We use
a lag ofs=26 by locating the first minimum of the average
u=v, mutual information function applied to the output time se-
ries.

In Fig. 3 we show the result of applying our diagnostic
with m=10 to clean input and output data. We see that for
We use parameter values that generate chaotic solutions, i.81€ casél =1, i.e., embedding using one input, there is a
€=0.25, y=0.3, andw=1.0. We consider the system as a Marked decrease in the slope afk,l) at k=2. .S|nce gll
driven system with the inpug(t) = cos@t). We generate a other curves do not show this decrease our diagnostic sug-

v=u—ud—ev+ycoqwt).
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FIG. 6. Plot of Caoet al. E2 statistic forl=1,...,5. @l FIG. 8. Plot ofe(k,l) for 1=1,...,5.@-1=1, *~|=2, x|

=1, *-I1=2, x-1=3, 0-1=4, and+-1=5. We see that consis- =3, o-I=4, and+—-I=5. We see that choosirig=3 andl=1 is
tent with our diagnostic this method suggests embedding witha suitable and minimal choice for embedding the BJT input-output
(k,)=(2,1). time series data.
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FIG. 10. Plot of Cacet al. E2 statistic forl=1,...,5. @l
FIG. 9. Plot of the percentage of false nearest neighbor$ for =1, *_|=2, x—1=3, 0-1=4, and+ -1 =5. We see that consis-
=1,...,5.@-=1, *-I=2, x-1=3, 0-1=4, and+-1=5. We  tent with our diagnostic this method suggests embedding with
see that consistent with our diagnostic the method suggests embegk, )= (3,1).
ding with (k,1)=(3,1).

. . _ _ input-output data points. The voltadk,. consists of a fixed
gests embedding the output data in two dimensidns2) e offset plus an amplitude modulated signal given[y
and using one inputl&1). To see how this answer persists +msin()]Vesin(wd), where m=4/5, V=5V, o
in the presence of noise we show in Fig. 4 the results of_ MH;anéwﬁES GHz. The voltagéxice ((C)ur inbut Se-
applying our diagnostic witim=10 to data corrupted with - q,ence consists of a fixed dc-offset and a one-tone signal
10% observational noise &bth the inputs and outputs. In ¢ _ 5 sin(5Grt/T), whereT=1le— 6s.
this case we notice that the effect of the noise has caused the |, Fig. 8 we silow the results of applying our diagnostic
suggestc_ad embe.dding di.mensioln to increase, but_ even Withith m=10. (We used a lag of 5 obtained by locating the
such_nmsy datallt was still possible to detect a suitable ©Meirst minimum of the average mutual function applied to the
bedding dimension. All curves show a marked decrease it data. Studying the figure we see that the slope of all
the slope ofe(k,l) atk=3. Since we favor embedding pa- o,res of e(k,1) begins to decrease &=3. Once again
rameters with as small a value lof-| as possible, our diag- gjnce we favor using a smallest total embedding dimension
nostic suggests embedding uskg 3 andl=1. as possible, a suitable embedding strategy is to ché@ose

For comparison we show in Figs. 5 and 6 the results oL 3 541 =1 |n Figs. 9 and 10 we show the results obtained
applying the Rhodes and Morari scheme and the &a@l. |, ;5ing the diagnostics of Rhodes and Morari and €tza.
scheme to the clean data respectively. In the Rhodes ange see that the embedding strategies suggested by these two

Morari scheme the values &f(andl) for which the percent-  giagnostics are consistent with the results we obtained with
age of false nearest neighbors drops to zero, or plateau’s at@,; method.

noise floor, are taken as the embedding parameters. The em-
bedding parameters suggested by the €gal. scheme are
those for which the curves plateau B2=1. We see that
both schemes suggest embedding wkHX=(2,1), which is We have demonstrated that an extension of a procedure
consistent with the values suggested by our diagnostic.  originally proposed by Waylanet al.to recognize determin-

The second example we study to compare our methogsm in an autonomous time series can also be used as a
uses input-ouput data obtained from a nonlinear tranSiStOﬂiagnostiC for determining an appropriate embedding dimen-
We consider the Ebers-Moll modél2] for a BJT shown  sjon for a driven(“input-output”) system. We have shown
schematically in Fig. 7. We obtain time series data by applythat the diagnostic is robust to the effects of noise and pro-
ing voltages across the base and emitter, and across the cglices results consistent with those of other diagnostics.
lector and emitter. We integrate the circuit equations and

V. CONCLUSION

obtain the currents at, and l,. For the purposes of this ACKNOWLEDGMENTS

study we will consider the current as the output data and
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