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Abstract  
The application of high spatial (~10 m) remote sensing satellites, such as Sentinel-2, to detect 
water quality issues faces two key technical challenges: (1) the accurate retrieval of water 
leaving radiances from satellite imagery (i.e. the atmospheric correction, surface reflectance 
and related problems), and (2) extending remote sensing water quality product maps beyond 
current quantities such as turbidity to new quantities such as concentrations of nutrients (e.g. 
nitrates, phosphorus) and indicators of toxins (phycocyanin, an indicator of harmful algal 
blooms) in waterways. Gybe is developing solutions to both of these technical challenges by 
using an in situ spectral sensor network that operates on the ground in tandem with satellite 
remote sensing imagery.


The Phase I proposal focused on problem (2) - the generation of remote sensing water quality 
maps for nutrients (specifically, nitrates), and indicators of harmful algal blooms (specifically, 
phycocyanin). Sentinel-2 is unable to measure either of these quantities directly because of 
fundamental physical limitations. In both cases, the Sentinel-2 does not have spectral bands 
targeted at the absorption features of either of these constituents in water - for nitrates it is 
spectral features in the UV that the satellite water imagers cannot detect, and for phycocyanin 
the absorption band (~630 nm) is not in the band set of the satellite's multispectral imager. In 
this SBIR Phase I we provided a demonstration, based on field trials, of how to measure both 
these quantities by fusing data from Gybe's in situ hyper-spectral sensor with Sentinel-2 
imagery. The demonstration sites were on the Kansas River at Desoto, KS, and the San Luis 
Reservoir near Los Banos, CA. Both multivariate adaptive regression splines and convolutional 
neural nets were used to create surrogate data models allowing for extended water quality 
product retrievals for both phycocyanin and nitrates. The methodology can be applied to 
similar nutrients (e.g. phosphorous) and pigments.


These new remote sensing data products provide spatial awareness of water quality 
throughout a reservoir, river, or watershed, enabling water managers to make better data driven 
decisions for flow plans and operations that balance metrics for power generation, water 
needs, and ecological sustainability, i.e., Sustainable or Green Hydropower. 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Summary 
DOE's 2016 Hydropower VISION report highlights the need to operate hydropower in a 
ecologically sustainable manner:


 "Ensure that hydropower’s contributions toward meeting the nation’s energy needs are consistent 
with the objectives of environmental stewardship and water use management." 

To develop business opportunities in support of this goal, section 13(b) "Innovative Sensing 
and Data Platforms for Water and Hydropower" of the FY2020 DOE SBIR request from the 
Water Power Technologies Office (WPTO) calls for "Innovate Sensing and Data Platforms for 
Water and Hydropower" which can include both remote sensing data sets and new in situ 
sensor networks that  "enhance the performance and value of hydropower systems" with 
respect to multiple metrics including "ecological, operational, safety, and hydrological," that is, 
flow and water quality.


This goal is well aligned with Gybe's goal to develop hydropower decision support tools based 
on real-time, actionable, data streams providing a comprehensive view of the flow and water 
quality state of a reservoir, river system, or watershed,


Gybe’s goal is to assist with the sustainable use of water resources by closing the loop between on 
the ground operations and measurable outcomes, visible at the watershed scale using satellite 
imagery. 

The application of remote sensing satellites, such as Landsat-8 and Sentinel-2, to water quality 
issues faces two key technical challenges: (1) the accurate retrieval of water leaving radiances 
from satellite imagery (i.e. the atmospheric correction, surface reflectance and related 
problems), and (2) extending remote sensing water quality product maps beyond current 
quantities such as turbidity to new quantities such as concentrations of nutrients (e.g. nitrates, 
phosphorus) and indicators of toxins (phycocyanin, and indicator of harmful algal blooms) in 
waterways. Gybe is developing solutions to both of these technical challenges by the use of an 
in situ sensor network that Gybe has created which provides a complete spectral signature of a 
specific location within a satellite image, and then propagates this information to the whole 
remote sensing scene. 


The Phase I proposal was focused on problem (2) - the generation of remote sensing water 
quality maps for nutrients (specifically, nitrates), and indicators of harmful algal blooms 
(specifically, phycocyanin). 
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Currently, Landsat-8 or Sentinel-2 are unable to measure either of these quantities directly 
because of fundamental physical limitations. In both cases, the current sensors do not have 
spectral bands targeted at the absorption features of either of these products - for nitrates it is 
spectral features in the UV that the satellite imagers cannot detect, and for phycocyanin the 
absorption band (~630 nm) is not in the band set of the satellite multispectral imagers. In this 
SBIR Phase I we provided a demonstration, based on field trials, of how to measure both of 
these quantities by fusing data from Gybe's in situ spectral sensor with Sentinel-2 imagery.


In collaboration with USGS, Gybe installed its sensor network at the De Soto, Kansas USGS 
Super Gage on the Kansas River, downstream from power operations in Lawrence, KS, by 
Bowersock Hydropower and several USACE reservoir operations. The Kansas river is a conduit 
for nitrates from the midwest traveling eventually to the Mississippi River, and the Gulf of 
Mexico. It experiences a high range of nitrate levels from 0.1 to 10 mg/L, usually peaking 
during spring when fertilizer is applied to fields after spring plowing. The Gybe sensor was 
installed during 2021 and provided the data record for algorithm development and validation. 


As a first step to creating a model for nitrates concentrations we build a convolutional neural 
network that correlates the target product (nitrate concentration) to satellite measurable 
quantities (turbidity, chlorophyll-a concentration) using only in situ. data. As mentioned, nitrates 
are not directly measurable by satellites, but turbidity and chlorophyll-a concentrations are 
measurable from Sentinel-2 imagery. Therefore, we first built models using machine learning 
(specifically splines, and neural networks) between these in situ data sets to discover the 
parameters that are measurable and best correlate with nitrates. The result of using neural 
networks trained on data from 2016-2020 at the De Soto showed excellent correlation for in 
sample testing. We next validated the model with an out of sample test data set during 2021. 
The excellent out of sample agreement demonstrates the feasibility of the method given a 
sufficient training set. To next test the method with Sentinel-2 remote sensing data we found all 
corresponding satellite matches in the 2021 time frame and implemented a similar model 
training run. The model for the satellite data shows  good correlation for the main nitrate events 
- spikes in nitrate values. The results are expected to improve as the data set grows. The 
USGS only data set contains ~ 100,000 instances, and the remote sensing data set contains ~ 
70 instances. The product is improved when an algorithm using data fusion from the Gybe 
sensor is incorporated - here the product is based not just on turbidity and chlorophyll-a, but 
an optimization over the primary spectral bands - that is all the spectral data available. We thus 
met the first technical objective, showing how to estimate and map nitrate concentrations from 
Sentinel-2 imagery with a field trial along the nutrient rich Kansas river. 
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For phycocyanin, the site selected was the San Luis Reservoir, the main storage reservoir along 
the canal of the Central Valley Project. San Luis reservoir experiences seasonal harmful algal 
blooms (HABs) due to its warm weather and abundant sunshine in the California central valley. 
Phycocyanin concentration varies from 0 to greater than 50 mg/L throughout the year. The 
Gybe sensor was installed on the pier of the intake pipe, in collaboration with the California 
Department of Water Resources (CA DWR), and has been collecting data since early 2021. 


For phycocyanin our target product does have a signature in a visible band (~ 630 nm), but this 
band is not covered by the Sentinel-2 or Landsat-8 multispectral imaging sensor band sets. 
Therefore, we used the Gybe sensors’ complete UV-VIS-NIR band set to detect the 
phycocyanin, and then used a linear correlation between bands to create an empirical model 
using only the bands available on Sentinel-2. Training data validation data were both collected 
during 2021, and band correlation between the Gybe sensors ~ 630 nm band and Sentinel-2's 
visible bands products showed a good correspondence to the variation in the 630nm 
phycocyanin absorption band, though matches in the data set were a very limited sample size.


We emphasize that both methods (for nitrates and phycocyanin) are empirical and site specific. 
They require the availability of contemporaneous in situ data to train the models, and 
propagate those calibrations across the entire image region as the satellite passes overhead. 
The spatial extent of the range of the validation of the models is still a topic of research and is 
presumably limited by changes with distance of atmospheric state and variations in water 
constituents due to extraneous inputs.


The Phase 1 work demonstrates the technical feasibility of estimating previously invisible water 
quality parameters from operational multispectral sensing satellites, namely phycocyanin and 
nitrates from Sentinel-2 imagery when fused with in situ sensor measurements. Methods were 
validated against field data from the USGS and CA DWR. The Phase 1 project opens the way 
to a basin-wide retrial of water quality maps which is spatially dense and unlocks new 
information from the growing archive of earth observation satellite images acquired daily. 
Applications include: planning of grab samples, understanding of water/land interactions and 
processes, identification of point and nonpoint sources of water pollution, the implementation 
of flow plans to balance multiple power and ecological metrics, and the evaluation of water 
ecology restoration projects. 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Introduction 
Water quality parameters such as turbidity and chlorophyll-a are currently being produced from 
satellite imagery such as Landsat-8 and Sentinel-2 which have a 30 meter and 10 meter spatial 
resolution respectively. Given their wide spatial coverage, these new water quality map 
services complement ground based point sensor measurements by providing a watershed 
wide view of water quality and its connection to land processes. There are many water quality 
parameters such as nutrients and other pigments associated with harmful algal blooms (HAB's) 
which are not accessible with current remote sensing satellites. For nutrients this is because 
the nutrients have a spectral signature in the UV, and not the visible part of the spectrum, and 
for HABs, the pigments spectral signature is not part of the limited band coverage of the 
satellite imagers. 


In the Phase 1 SBIR we proposed and demonstrated that it is possible to extend the products 
available from Sentinel-2 by augmenting its imagery with on the ground, contemporaneous, 
spectral data from a spectral radiometer developed by Gybe that covers the full visible 
spectrum. Specifically we chose target products of nitrates and phycocyanin since these are 
water quality products of high public concern. Nitrates because it is a principal driver of 
eutrophication and subsequent dead zones in water bodies, and phycocyanin because it is 
often associated with HAB's.  


Phase I Technical Objectives  

The overall technical objective is to demonstrate the retrieval of water quality maps for quantities 
that are not directly measurable by operational high spatial resolution multispectral imagers such as 
Sentinel-2. We accomplished this by fusing the multispectral imagery with a ground based  
sensor network collecting contemporaneous data for a specific region of interest (ROI). 
Specifically, the target products are nitrates and phycocyanin concentrations, both of which 
have absorption features that are outside of the band set for Sentinel-2 and Landsat-8.


We accomplished this goal in three steps: 


	 (1) identification of appropriate sites to run trials for data collection; 

	 

	 (2) installation of the Gybe sensor system and data collection and processing over

	 seasons where the target products vary greatly, and 

	 

	 (3) the development of new algorithms for data fusions between the Gybe sensor and 

	 Sentinel-2 which are validated against field data.
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Phase I Accomplishments  

For nitrates the site selected was the USGS Super Gage at on the Kansas river in De Soto, KS, 
east of Lawrence, KS (Fig 1). This site is centrally located in a midwest agriculture region and 
has hydropower generation at Lawrence, KS. It is a conduit for nitrates from the midwest 
traveling eventually to the Mississippi River, and the Gulf of Mexico. It experiences a high range 
of nitrate levels from 0.1 to 10 mg/L, usually peaking during spring when fertilizer is first applied 
to plowed agricultural fields. The Gybe sensor, in collaboration with the USGS, was installed 
during 2021 and provided the data record for algorithm development and validation.


For phycocyanin, the site selected was the San Luis Reservoir, the main storage reservoir along 
the canal of the Central Valley Project near Los Banos, CA (Fig 2). San Luis reservoir 
experiences seasonal HAB's due to its warm weather and abundant sunshine. Phycocyanin 
concentration varies from 0 to greater than 30 mg/L throughout the year. The Gybe sensor was 
installed on the pier of the intake pipe, in collaboration with CA DWR, and has been collecting 
data since early 2021. 


New algorithms were developed and tested for both nitrates and phycocyanin. The basis for 
both algorithms is what the USGS calls the method of 'surrogate data’ [1]. The method is 
empirical and uses numerical models to correlate the target product (e.g. nitrate concentration) 
to measurable quantities (eg. turbidity, chlorophyll-a concentration). As mentioned, nitrates are 
not directly measurable by satellites, but turbidity and chlorophyll-a concentrations are 
measurable. 
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Therefore, in our model development we first built models using machine learning methods 
(specifically splines, and neural nets) between in situ data sets to demonstrate the feasibility of 
the surrogate method for the target products. The result of using neural nets trained on data 
from 2016-2020 at the Desoto site is shown in Fig 3.
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The test set was the out of sample data set shown during 2021. The good out of sample 
agreement demonstrates the feasibility of the method with an ample training set. To extend the 
method to Sentinel-2 remote sensing data we found all corresponding satellite matches in the 
same time frame and implemented a similar model training run. The model for the satellite data 
shows  good correlation for the main nitrate events - spikes in nitrate values (Fig 4.). 


The results are expected to improve as the data set grows. The USGS only data set is ~ 
100,000 instances, and the remote sensing data set is ~ 70 instances. The product is improved 
when algorithms using data fusion from the Gybe sensor are incorporated - here the product is 
based not just on turbidity and chlorophyll-a, but an optimization over the primary spectral 
bands - that is all the spectral data available [3].


For phycocyanin our target product does have a signature in a visible band (~630 nm), but this 
band is not covered by the Sentinel-2 or Landsat-8 sensors. Therefore, we used the Gybe 
sensor to detect the phycocyanin and then used empirical correlation between bands (Fig. 5) to 
create an empirical model using the bands on Sentinel-2. Sample images showing both green 
and blue-green algae blooms are shown in Figure 6.
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The Phase 1 work demonstrates the technical feasibility for estimating new methods and 
products for water quality parameters from remote sensing satellites, namely phycocyanin and 
nitrates. The methods are validated against field data from the USGS and CA DWR. The Phase 
1 project opens the way to a basin wide retrial of water quality maps which is spatially dense. 
Data of this type has many applications including: planning of grab samples, understanding of 
water/land interactions and processes, identification of point and nonpoint sources of water 
pollution, and the evaluation of water ecology restoration projects.
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Details of results from work plan 

Task 1: Site planning and sensor installation 

High nutrient levels in source waters can lead to water quality issues ranging from algal blooms 
locally, to hypoxic conditions globally. A good example of this is the Kansas river system which 
locally has high nitrate levels from leaching of fertilizers into the Kansas river causing, in some 
instances, HAB's. More globally the Kansas River feeds into the Missouri River and finally into 
the mouth of the Mississippi River contributing nutrients that have led to an oceanic 'dead 
zone.'  The Kansas River experiences a wide range of nitrate levels, typically peaking in the 
spring after plowing and the first application of fertilizers to agricultural fields. The USGS also 
maintains a Super Gage which makes continuous measurements of nitrate levels [4]. This site 
was chosen for our nitrate study since it met our planning criterium for continuous 
measurements of nitrates, colocation with a USGS Super Gage, good visibly by Sentinel-2, and 
an engaged collection of stakeholders that includes a private hydropower operator upstream in 
Lawrence, KS.  Our original proposal described the use of a site on the Willamette River in 
Oregon, however, further discussions with the Portland, OR office of the USGS made this site 
less attractive because the nitrate variation was not as wide as the Kansas site, and the 
Portland USGS sensor location did not provide good visibility to the river (downwelling light 
was shadowed by a bridge structure).


For our HAB pigment study the San Luis Reservoir near Los Banos, California was selected [5]. 
The site is the largest reservoir on the Central Valley Project and experiences a regular pattern 
of HAB's due to the warm weather and abundant sunshine. Dam operations are managed by 
California Department of Water Resources (CA DWR). 


We had limited access to both sites at the start of the project due to the COVID-19 outbreak 
which led to a delay of sensor installation plans. Sensor installations were originally planned for 
the Fall of 2020, but we were only able to get permitting and access to both sites in the Spring 
of 2021. This led to a no cost project extension from July 2021 to December 2021 so that we 
could collect and analyze data from the Fall season.


(a) Nutrients - Desoto, Kansas Site 

The USGS De Soto, Kansas Gage (site number: 06892350) is located at 38.9822 N by  
-94.0648 W at the De Soto bridge crossing of the Kansas River on Kansas Hwy 2. The site is a 
USGS 'Super Gage' and includes sensors for water quality pigments including chlorophyll-a 
(chl-a), phycocyanin (pc), turbidity, and nitrates (NO2 + NO3) [6]. A continuous record (15 
minute sampling) for these parameters dates back at least to 2015, though short and long term 
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gaps exist in individual sensor records because of sensor impairments, or the failure of data to 
pass USGS's strict quality control protocols. 


With the assistance of USGS Lawrence, Kansas office we installed the Gybe sensor (Fig. 1) on 
the bridge above the USGS's gage. The Gybe sensor is a radiometer system which measures 
downwelling solar irradiance and upwelling water radiance to facilitate more reliable match ups 
with remote sensing satellites, in particular Sentinel-2 image records. The Gybe sensor 
measures light from  ~400-800 nm with ~10 spectral resolution every 5 seconds.

 


Actual sampling integration times range 
from 100 microseconds to 2 seconds, and 
data is averaged to get an aggregated 
spectrum. 


The integration time varies automatically 
with light conditions. Achieving reproducible 
results with the Gybe sensor requires 
radiometric calibration. As part of this 
project we hired a student intern to assist 
with both the sensor construction, sensor 
calibration, and field installation (Fig. 7). 

The Desoto site location is on a bridge that 
faces north-south. 


This allowed us to point the sensor on the east side of the bridge, toward the middle of the 
Kansas river at an angle of approximately 45 deg NE from North. The best data retrievals are at 
135 deg from the solar azimuth to minimize sun glint from the water surface [7,8]. The sensor is 
also pointing about 45 deg up from the water surface. Both view angles are chosen so that the 
sensor is approximately in alignment with the NASA above water ocean color radiometric field 
measurement protocols for viewing when the solar angle is at high noon (Fig. 1).


(b) Harmful Algal Blooms - San Luis Reservoir, California Site 

The San Luis Reservoir sensor is located on a large concrete structure above the intake pipe 
for water operations (. 8). The sensor is located at 37.0674 N, -121.0854 W on the South West 
corner of the structure and the sensor faces approximately due West (solar noon azimuth 90 
deg), looking at the water surface at 45 deg from vertical. The structure is typically 10 meters 
(depending on water level) above the water surface and 150 meters from the shore, still there 
can be some shadowing on the water surface before noon.


The Gybe sensor was installed in the spring 2021 after access and permitting was granted by 
CA DWR and CA Parks. There is a regular water sampling program including HAB toxins at 
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several locations in the reservoir. The most 
commonly reported toxin is microcystin. Also 
tested for are cylindrospermopsin, saxitoxin, 
and anatoxin-a. 


The most extensive testing is at Basalt Road 
boat ramp in the southern part of the reservoir. 
Previous work has identified microcystis as the 
the typical source species for the toxins, which 
forms long colonial strands near the surface in 
the day which provides an easily imaged 
feature in remote sensing imagery as seen in 
Fig 2. [9]. Drought conditions have been 
common in California in recent years and 2021 
was no exception. Danger levels for HABs were 
issued for much of August and September of 
2021 (Fig 9).
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Task 2: Data flow, processing, and modeling framework 

Gybe sensor data is streamed via cellular connection to our data servers. The Gybe raw sensor 
data is organized into a Level 0 (L0) data file to which lab calibrations are applied which convert 
digital numbers (DN's) to Level 1 (L1) radiances (upwelling) or irradiance (downwelling). The Rrs 
values in this report use lab calibrations for radiances and irradiances, our operational codes 
for Remote sensing reflectances (Rrs), Level 2a (L2a) processing use the method described by 
Grötsch et. al. [2]. These Rrs values are then used to compute Level 2b (L2b) water products. 
Standard satellite band methods for chlorophyll-a, turbidity and other quantities are used. A 
range of standard algorithms were tested from OC5 to Mishra; similarly, for turbidity the 
Dogliotii band algorithm was used [10,11]. For both sites, these algorithms are 'tuned' by a 
linear regression to the model coefficients with any ancillary field data or available gauge data. 
The algorithms used were chosen to be identical to the algorithms for Level 2 product 
generation used by Acolite [12,13]. An alternative method we are developing uses a nonlinear 
optimization method recently described by Grötsch which uses all the bands [2]. This spectral 
optimization method is seeded by a range of water parameters which we estimate for each 
site, and proceeds to find the best fitting spectrum built from a fixed bio-optical model of the 
water [14].


On the remote sensing side, Sentinel-2 imagery was downloaded from European Space 
Agencies' (ESA) Copernicus Hub Server. Both a L1 and L2 product are available from the ESA. 
Sentinel-2 has a nominal 10-20 meters spatial resolution in the visible spectrum, and bands 
B1-B8 are centered at 443, 490, 560, 665, 705, 740, 783, 842, 865 nm. We worked with the L1 
ESA data (top of atmosphere radiances) and produced L2 products (Rrs, and water quality 
parameters) using the open source program Acolite development by Vanhellemont [15]. 
References for all the band water quality products and their associated band algorithms are 
described in the Acolite Manual, and they were the same band algorithms used by the Gybe 
sensor (up to parameter tuning) [10,11,12].


For model development, we first tested different types of models using the full data sets from 
USGS, and then selected the best models for further development for product generation from 
remote sensing data. For readability, we will describe the general framework for our model 
generation before describing more details about how we processed the ancillary USGS or 
DWR data for the target products of nitrate and phycocyanin.


Surrogate modeling is a term used by the USGS to describe the estimation of a water quality 
parameter, say phosphorus concentration, by modeling its correlation to other water 
parameters, such as turbidity and discharge [1,16]. The utility of the  model is that the target 
parameter is usually more difficult or expensive to measure than source parameters. For 
instance, turbidity gauges are both less expensive and more reliable than nitrate gauges. 
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Specific surrogate models are empirical and site specific. Surrogate models are common in 
many fields of engineering and go under numerous names. In machine learning they are called 
tabular models [17], in electrical  engineering behavioral models [18], and in time series analysis 
Multiple Input, Single Output (MISO) models. In all cases, the mathematical problem is similar, 
the estimation of a target variable, 


      


in terms of multiple source variables , given a discrete sample set for both input 
and output variables. The above problem is referred to as  'static' since it has no explicit 
temporal dependence. In the examples described in this report we also assume that the 
models are continuous. The target product model is a surface (or more generally manifold [19])  
which can be estimated by explicitly formulating the underlying assumptions in the model, and 
the uncertainty in the data - that is with a statistical framework. 


In contrast, A 'dynamic' model includes explicit temporal dependence. The system is 
described by a state vector that traces out a continuous trajectory in a 'state space.' These are 
commonly said to be systems 'with memory.' In one formulation they are modeled by fitting a 
vector field, 


     


     

and model predictions are obtained by the integration of the model, and not just by functional 
evaluation, as with 'static' models. Examples of dynamic models are time series models with 
feedback (NARMAX), or recurrent neural networks. The discussion above is very informal: 
under suitable mathematical assumptions, dynamic models can be translated to static models,

and continuous models parametrized by  can be reformulated in terms of a discrete delay 
parameter, . The above discussion is simply meant to help orient the reader about the different 
approaches available for data driven modeling.


In this report we describe the development of surrogate models for water quality from remote 
sensing data such as that provided by Sentinel-2 [20].  Most water quality applications of 
surrogate models correlate water samples collected in the field (and measured in the

lab) to in situ real time gauges. For instance, correlating data from turbidity gauges to weekly 
nitrate estimations from water grab samples [1]. Since the source variables are continuous 
measurements (e.g. 15 minute turbidity measurements from USGS gauges) it is possible to 
consider either static or dynamic models. However, if the underlying data for the source 
variables are not sampled well enough to be rendered as a continuous sequence - as is the 

y = f (x1, x2, . . . , xn)

x1, x2, x3, . . .

dy
dt

= f (x1(t), x2(t), x3(t), . . . )

t
τ
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case with many satellite observations which have revisit times of order of days and not minutes 
- then we are constrained to the use of static models.


We discuss extensions of surrogate models for water quality data by moving from linear 
modeling functions to nonlinear modeling functions, specifically splines and neural networks, 
and discussing the functional estimation problem of static modeling from a set theoretic 
perspective, with what is called 'manifold learning.' The perspective aids understanding of 
underlying physical processes as well as providing guidance on creating nonlinear surrogate 
models that complement the statistical guidelines described in several USGS reports [21]. The 
described modeling considerations are helpful for extending  surrogate modeling to inputs that 
include remote sensing data which is capable of providing data of greater spatial coverage 
than gauge data alone.


To estimate models of nitrate from possible 
remote sensing quantities, we first start with 
the USGS and curate and organize the time 
series data into contiguous records with no 
gaps. We start with all qualified data from the 
USGS portal from 2016 (the start of the 
Sentinel-2 record) till the end of 2021 [6].  Next 
we specify a collection of input and output 
variables and break the initial  USGS data 
(with gaps) into smaller records that are 
contiguous and have no time gaps. All data 
gaps less than 3 hours or less (12 samples at a 
15 minute sampling interval) are interpolated 
to provide continuous record. If a gap is longer 
than 3 hours, then the data set is  split, and a 
new contiguous data set is begun. 


Figure 10 shows a histogram of the sequence of contiguous data sets that are found when two 
input variables are selected - turbidity and chlorophyll-a - and the output is nitrates. 

Sequences less than a minimum length are also excluded from modeling, typically 7 days (or 
sequences less than 672 points). Continuous data sets are desirable when forming state space 
models and for creating ancillary variables (such as derivatives) which can be used for filtering.  
These subsets are then examined for any anomalies or outliners.


The first artifact noticed in the data records is digitization noise. Data reported by USGS 
typically contains 3 significant digits.  When plotted there are small visible jumps in the data 
which are artifacts of the effective digitization of the supplied data. Therefore, the next step is 
data smoothing. 
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We used a moving mean filter, typically with a window length of 12 hours (48 points). Though 
not utilized here, we also experiment with polynomial smoothing filters, such as a  Savitzky-
Golay (SG) filter, which permit the estimating of smooth derivatives. We note that  a moving 
average filter creates a linear correlation of points within the averaging window which may, or 
may not, be in the original data set. Effectively, the moving average filter acts as a low pass 
filter, in this  case minimizing signal oscillations below 6 hours (see Fig 11).


The subsequences are then collected into a single training set. The training set is curated to 
provide representative samples of each nitrate event -- a spike in the nitrate values. In machine 
learning this is called 'instance selection,' and  can help with both training speed and model 
accuracy [22]. As an example, long sequences of near zero values could be removed to

shorten the training set. In effect this step reweighs data values and can also be accomplished 
in the functional estimation step by adjusting the weighting functions. It is not an essential step 
for this data set and we did little or no instance selection in building our training data sets.


The next standard step before function fitting is data normalization to aid with numerical 
estimations.  The quantities in the USGS time series are all inherently positive. So instead of 
centering on the mean, we normalize the data records to a magnitude of one with 

     

This transformation is reversible, so no information is lost in the final prediction of products in 
physical units. The normalizations are chosen over the minimums and maximums over the full 
training set.


Nx = (x − min(x))/(max(x) − min(x))
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Task 3: Model development and validation  

(a) Nitrate retrievals 

Sentinel-2 imagery is available every 2nd and 3rd day at the Desoto, Kansas gauge. A catalog 
of imagery is shown in Figure 12. Many images are not useful because of cloud cover, ice 
cover, or other variable atmospheric conditions that make above water retrieval of radiances 
difficult. In total, 49 images were usable during 2021, and of those only 39 had complete sets 
of matching in situ data. Still, the available imagery is very informative and covers the full range 
of water states. For instance, Fig. 13 shows how the water changes from a highly turbid state 
(brownish water) to a high chlorophyll-a state (greenish water) in just 3 days during the Fall of 
2021. The brownish water and higher water levels is due to a storm between 8 - 14 August 
2021. The jump in turbidity can also be seen in Figure 11. 


Figure 14 shows the dates of in situ data matches to good Sentinel-2 imagery. The data in the 
Figure is not vicariously calibrated. However, it still shows a few sensible trends. First, there is 
little data recovery in the winter (February) because of either clouds, snow or ice. Second, in 
general, turbidity values are inversely correlated to chlorophyll-a concentrations. This is 
reasonable, high turbidity values limit light which is essential for growing phytoplankton 
communities. It is also consistent with the type of band ratio algorithms used. Similarly, as seen 
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in Figure 12, elevated chlorophyll-a values tend to pull down future nitrate values as 
phytoplankton consume nutrients. 


To vicariously calibrate the satellite data products we can regress them against the USGS 
gauge data records. Figure 15 shows an estimate of the linear correlation (gain correction) 
needed to adjust the satellite retrievals of turbidity and chlorophyll-a to the gauge values. The 
gain adjustment for both products is ~ 2. 


The scatter shown is typical for satellite retrievals, which typically need long data sets (< 200 
pts) to show greater convergence.


The next step is to create a 
static model to quantitatively 
correlate turbidity and 
chlorophyll-a values to nitrates. 
We tested two types of nonlinear 
functional methods, Multivariate 
Adaptive Regression Splines 
(MARS) [23], and convolutional 
neural networks (NN) [18]. For 
the MARS functions we used the 
Python py-earth library, or a 
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similar implementation in R or Matlab [23]. 


For MARS, the main parameters to tune are maximum number of basis functions (maxFuncs), 
maximum degree of interactions of input variables (maxInteractions), and the degree of the 
spline (linear, cubic, ...). For smaller data sets (<100 pts), we found that the most critical 
parameter was maxInteractions. Values chosen for this modeling exercise was maxFuncs = 40, 
maxInteractions = 5, spline type = cubic. A typical fit is shown in Figure 16 with a R2 value of 
0.96. The more critical test of the model is the 'out of sample' performance. 

We trained on the first 80% of the data (Mar-Aug) and tested on the last 20% (Sept-Oct). The 
R2 drops to 0.81 for the out of sample fit, but the result is still accurate enough for many 
applications (Fig. 17).
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As we increased the size of the training set we found that the spline models did not improve in 
accuracy. We conjecture that this is due to a lack of injectivity in the data set as the number of 
data training points increases --- that is there is a wider range of responses for similar inputs. 
We are preparing a paper that explains this theory in more detail [24].


In an attempt to improve the out of sample prediction, particularly for large data sets, we next 
turned to a black box a convolutional neural network model we formulated in Python PyTorch. 
Figure 3 shows a trading set based on 2016-2020 USGS data as input and the output again is 
nitrates. Though we are still in the early stages of these exercises, the conclusion is clear -- 
accurate predictions of nitrates for specific sites is possible from nonlinear models using only 
chlorophyll-a and turbidity. either from other gauge data (as has been noted previously), or from 
the same product fields derived from remote sensing.


Again we emphasize that the models are empirical and site specific. More work is needed to 
see how general these results are, and under what degree of concentration variations they 
might hold. Still, the first results do provide solid evidence that where nitrate value variations 
are of order 10X, and there are associated patterns of color variation in water (due to runoff or 
phytoplankton growth), quantitative correlations are feasible and useful to create.


(b) Phycocyanin retrievals 

Sentinel-2 L1b data was downloaded from ESA's Copernicus Hub and processed to a L2 
product including band Remote sensing reflectance (443, 490, 560, 665, 705, 740, 783, 842, 
865 nm) [25]. In addition basic water quality products were produced for turbidity, chlorophyll-
a, and a Normalized Difference Chlorophyll Index (NDCI) which is useful for detecting surface 
blooms [11-14]. All product data were interpolated to 10 meters.  A browser for the processed 
Satellite Data of the San Luis Reservoir for 2021 is shown in Figure 18. 
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During the second half of 2021, CA DWR collected water samples at a few locations in the San 
Luis Reservoir. The main sites are the Basalt Boat Ramp and the Pacheco Pumping Plant. The 
samples are analyzed for various toxins including microcystins, cylindrospermopsin, saxitoxin, 
and anatoxin-a. Microcystins are the most prevalent. Some species identification is also done. 
The most common species later in the year is microcystis, and earlier in the year 
dolichospermum is observed (Fig. 19). 


In order to estimate the toxic (blue-green) algae in the reservoir we look at an associated 
pigment, phycocyanin. A recent study by Nardelli and Twardowski discusses the utility of using 
absorption  bands to estimate pigment concentrations in field studies [26].  Specifically, they 
examine Chl-a absorption at 676 nm. Where possible to utilize, absorption provides a direct 
physical mechanism for detection of a pigment. The Gybe sensor can detect these absorption 
bands as illustrated in Figure 5. On the left side of Figure 5, Gybe sensor data for downwelling 
solar irradiance (including O2 absorption at ~760 nm) is plotted, and upwelling surface 
radiance is also shown. On the right side of Figure 5 the key absorption and reference bands 
are indicated -- a maximum back scatter band that is often used as a reference at 560 nm, and 
the phycocyanin band at ~630 nm, and a chl-a band at ~676 nm.  


We will not go into great detail here, but a rough estimate is made of the so-called 'sky-glint' in 
the computation of Remote Sensing Reflectence (Rrs) [27]. The sensor placement had two 
non-ideal factors which affect the estimation of Rrs. First, the sensor was on the West side of a 
concrete structure above the intake pipe for the reservoir.  The structure causes some 
blockage of sunlight preventing a full exposure of Es on the water (shadowing) before the solar 
zenith for the day (~1 PM PDT).  We used a single (spectrally constant) scale factor to account 
for this shadowing. Of more concern is the sky-glint. The sensor is facing due West, so in the 
afternoon the relative view angle has increasing contamination by sky-glint which is easy to see 
in the Lt spectral data. We did a crude fix for this by subtracting off a spectral constant from Lt 
to ensure that the deep red signal is close to zero. Additionally, we did not use data past solar 
noon to keep sky glint contamination to a minimum. 


For the reasons just discussed and a number more, the absorption bands are a proxy for 
estimating absorption directly, and its response may only be approximately linear (as opposed, 
say, to an instrument designed to measure absorption, such as the SeaBird's ac-s [28]). Still, as 
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is commonly done, we used a Line Height 
algorithm to correlate the absorption (chl, pc 
concentrations)  to the remote sensing 
reflectance spectra [29]. Figure 20, for 
instance, shows three scenes with increasing 
bloom intensity and (presumably) different 
compositions (green vs. blue-green algae 
population percentages). The Line Height 
method (here a line 'dip') uses 

only the local min or max in the spectrum, 
and can be less sensitive to other 
confounding factors. The specific method is 
illustrated in Figure 21. For each pigment 
three bands are chosen -- L (Lower), M 
(Middle), U (Upper) -- and the local dip is 
estimated by computing the distance from location of the value at the middle band, to a line 
formed by the values of the Lower and Upper band directly above the critical point. The 
specific formula is (see Fig. 21):


      
lh = δ ⋅ rU − rM + (1 − δ ) ⋅ rL, δ =
(λM − λL)
(λU − λL)
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For this application the bands were all chosen based on the best bands for the spectra 
collected at San Luis reservoir with the Gybe Sensor. Specifically, for Chl-a the band set was 
(655, 676, 695) nm, and for PC the band set was (614, 631, 647) nm. The line height for 
phycocyanin is then regressed against the water samples. As is all too common in ocean color 
field studies, the locations do not match closely. The Gybe sensor views water on the 
Northeast side of the reservoir, and the water samples are from the Basalt Boat Launch on the 
south side. As some of the imagery indicates, at least for surface concentrations, the 
phytoplankton are not well mixed. 


At the surface, the microcystis can bunch 
together in long rows. The green algae at 
depth does appear more well mixed. 
Additionally, we observed a large scatter in 
the matchups for values below 4 ng/mL, so 
we exclude these samples. This is similar to 
the observation that Nardelli and 
Twardowski made for chl-a concentrations 
below 2 ng/mL [26]. After excluding these 
low values, we did observe a good 
correlation, though the data set is limited to 
only 7 samples (Fig. 22).  


The last step is to relate the linear regression 
in Figure 22 to a subset of Sentinel-2 

products (the spectral bands and/or water quality products). Given the small data set, we did 
not perform a more detailed study in surrogate modeling, but we were able to get a usable 
correlation with only the Normalized Difference Chlorophyll Index (NDCI), which we then used 
to estimate the microcystin concentration for clear Sentinel-2 images for 2021 (Fig 23). 
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Because of the limited data these results should only be taken as indication of a correlation, 
and not for any quantitative predictions at this stage.


For completeness we compared the Sentinel-2 phycocyanin retrievals to chlorophyll-a 
retrievals for Sentinel-3 from the NOAA product (Fig 23) [30]. Both retrievals are based on 
averaging pixels (for Sentient-2 a 100x100 box) from the center of the reservoir. 

A more detailed analysis is called for based on these preliminary results. For instance, there is 
some evidence that the blue-green algae crowds out the green algae in the Fall, that is, there is 
a sharp change in the community composition throughout the year. 


Additional field data coordinated with historical remote sensing products should be able to test 
this hypothesis given the preliminary results and methods described in this study. Though 
these results are preliminary and limited, we think they provide compelling evidence that fusing 
contemporaneous in situ spectral data with operational remote sensing imagery, it is now 
possible to track independently both green algae and blue-green (HAB producing) algae 
independently. 


This greatly increases the confidence of a remote sensing product in the monitoring of HABs, in 
particular, in tracking their movements (e.g. concentrations across a reservoir, proximity to 
intake pipes) with high spatial resolution. Therefore, we have demonstrated how to fuse in situ 
spectral data with Sentinel-2 imagery to produce a phycocyanin retrieval, albeit for a very limited 
data set. We caution though, that additional validation data sets are required to further refine 
the method, and gauge better the uncertainties, limitations, and utility in water management 
operations.
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Conclusion 
This study set out to test the hypothesis that the combination of contemporaneous remote 
sensing imagery from operational sensors, in particular Sentinel-2, and an easily deployed sensor 
network of spectral radiometers -- the Gybe sensor net -- enables the retrieval of new water quality 
parameters, in particular, nitrates and phycocyanin. Each quantity -- a nutrient and a harmful 
algal bloom indicator -- are considered to be among the most pressing needs of water quality 
managers. In addition to the deployment of the network and the collection of the required 
validation data, this study also greatly extended the method of 'surrogate data modeling' 
currently in operational use by USGS, to nonlinear functional fitting with splines and neural 
networks. These new deep learning algorithms showed compelling results in their ability to track 
nitrates in the Kansas River using only inputs of turbidity and chlorophyll-a either from other gauge 
data, or from Sentinel-2 remote sensing data. To the best of our knowledge these results provide 
a new level of accuracy for surrogate data estimations, which are of great concern for water 
quality managers. 


Similarly, our study in the San Luis Reservoir, though based on limited validation data, also 
shows that HAB pigments detected by an in situ spectral sensor network can be correlated to 
existing multispectral imager products. With additional data, we also expect that the application 
of deep learning algorithms will produce results similar to our initial results with nutrients along 
the Kansas River. 


The wide spatial coverage of the remote sensing of these new water quality products is useful 
for the water quality operations on several fronts including the identification of point and  
nonpoint runoff sources of nutrients and pollutants, the planning of effective sampling 
operations, the timing of reservoir releases for ecological impacts (i.e. river flushing), and the 
balancing of flow operations to meet metrics both for power operations and ecological 
sustainability.
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