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I identify the template organizing the chaotic dynamics of a bouncing ball system. I further
show how to estimate the topological parameter values of the system directly from a time series—a
process I call “topological time series analysis.” Two distinct methods to determine the topological
parameters are illustrated and compared—the “pruning front” procedure and a “braid analysis.”

Both procedures lead to compatible results.

PACS number(s): 05.45.+b, 47.52.+j

L. INTRODUCTION

Braids arise as periodic orbits in dynamical systems
modeled by three-dimensional flows [1-4]. The existence
of a single periodic orbit of a dynamical system can imply
the coexistence of many other periodic orbits [5-8]. The
most well known example of this phenomenon occurs in
the field of one-dimensional dynamics and is described
by Sarkovskii’s Theorem [9]. Less well known is the fact
that analogous results hold for two-dimensional systems
[3]. In one-dimensional dynamics it is useful to study
the period (or the permutation) of an orbit [10]. In two-
dimensional systems it is useful to study the braid type of
an orbit [2]. Given this specification, we can ask whether
or not the existence of a given braid (periodic orbit) forces
the existence of another; as in the one-dimensional case,
algorithms have recently been developed for answering
this question [11-13].

As originally observed by Auerbach and co-workers,
unstable periodic orbits are available in abundance from
a single chaotic time series using the method of close re-
currence [8,14,15]. By a “braid analysis” I propose to
analyze a chaotic time series by first extracting an (in-
complete) spectrum of periodic orbits, and second order-
ing the extracted orbits according to their orbit, forcing
relationship. As shown in this paper, it is often possi-
ble to find a single periodic orbit, or a small collection
of orbits, which forces many orbits in the observed spec-
trum. These orbits also force additional orbits of arbi-
trarily high period. This analysis is restricted to “low-
dimensional” flows (roughly, flows which can be modeled
by systems with one unstable Lyapunov exponent); how-
ever it has a strong predictive capability.

I would also like to point out that this analysis gives
us an effective and mathematically well defined “pruning
procedure” for chaotic two-dimensional diffeomorphisms
[16]. Instead of asking for rules describing which orbits
are missing (pruned), I instead look for those orbits which
must be present. For low-period orbits (say, up to period
11) this procedure can predict all those orbits which must
be present in the flow. This procedure will usually miss
orbits of higher period; however, from an experimental
viewpoint, the low-period orbits are the most important
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and accessible. Orbits of low period often force an infinity
of other orbits. This is illustrated in one-dimensional dy-
namics by the famous statement “period 3 implies chaos”
[17]. An analogous statement in two-dimensional dynam-
ics is that a non-well-ordered period 3 braid implies chaos
[18].

This paper is organized as follows. Section II reviews
the dynamics of the bouncing ball system. In Sec. IIII
identify the template organizing the chaotic flow of the
bouncing ball system. It is a horseshoe with a full twist.
In Sec. IVI show how braid analysis works by apply-
ing it to times series data generated from the bouncing
ball system. The analysis builds directly on the original
topological analysis of such data sets attributed Mindlin
et al. [19]. This section also illustrates how easily mea-
sured braid invariants of the periodic orbits lead to strong
dynamical information about the flow—without the need
for a problematic and detailed symbolic description of
the orbits in phase space. Section V illustrates how a
pruning front can be estimated from a collection of low-
period orbits. The results are compatible with the braid
analysis of the preceding section. Section VI offers some
concluding remarks.

In the example studied in this paper I do have good
control of the symbolics. In principle, though, a braid
analysis does not require good control of the symbolics
(a good partition) and can thus overcome some of the
current difficulties associated with finding good symbolic
descriptions for (nonhyperbolic) strange attractors [20].

II. BOUNCING BALL SYSTEM

Consider the motion of a ball bouncing on a period-
ically vibrating table. This bouncing ball system arises
quite naturally as a model problem in several engineer-
ing applications: examples include the generation and
control of noise in machinery such as jackhammers, the
transportation and separation of granular solids such
as rice, and the transportation of components in au-
tomatic assembly devices which commonly employ os-
cillating tracks. Several researchers have studied one-
dimensional models of the bouncing ball system which
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include the coefficient of restitution (0 < a < 1), and
many have also noted the existence of a large class pe-
riodic, chaotic, and eventually periodic orbits known as
“sticking solutions” [21]. More details can be found in
Ref. [22]. All these models have been termed the “exact”
one-dimensional model of the bouncing ball system. The
phrase “one-dimensional” refers to the number of degrees
of freedom the ball moves in and not to the dimension of
the phase space model.

To fix a notation which allows an easier comparison
with experiments, recall that the dynamics of the bounc-
ing ball system can be found by solving the (implicit)
nonlinear coupled algebraic equations known as the phase
map,

Alsin(0k) + 1] + vk [1 (Ok41 — 9#)]

w

2
_%g [5(0k+1 - 0k)] — Alsin(64+1) + 1] =0 (1)
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and the velocity map,

(1+ a)wAcos(Or+1)

—a {vk -g [%(0k+1 - 9k)]} = Ukt1, '(2)

where 0, = wt + 6y and vy, are the phase and velocity of
the kth impact between the ball and oscillating table, A
and w are the table’s amplitude and angular frequency,
a is the coefficient of restitution, and g is the gravita-
tional acceleration. The table’s forcing period is denoted
by T = 2n/w. The implicit phase map and explicit ve-
locity map constitute the ezact model of the bouncing
ball system. Earlier experimental studies showed an ex-
cellent correspondence between the exact model and the
dynamics of an experimental bouncing ball system; all
the major bifurcations predicted by the exact model oc-
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FIG. 1. Bifurcation diagram for the bouncing ball system.
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curred within the experimental system [23]. Observations
between the model and experiment agreed to within 2%
with no fitted parameters. A public domain program, the
Bouncing Ball Simulation System, is available to simu-
late the exact model [22]. I use this program to obtain
the time series data analyzed here.

Experiments illustrating chaos in the bouncing ball
system usually proceed along the following lines. The
amplitude of the table driving the ball is slowly in-
creased while monitoring the dynamics of the bouncing
ball through an experimental impact map, which is sim-
ilar to a next return map. In essence, an experimen-
tal bifurcation diagram is created. The coefficient of
restitution can be changed from around 0.2 to 0.8 by
using different materials for the ball (e.g., wood, plas-
tic, steel). Experimentally, it is observed that a chaotic
invariant set is seen at the end of the period doubling
cascade, but for a further increase in the driving ampli-
tude, the strange attractor is destroyed by a crisis [24].
The dynamics of the ball after this crisis can result in
motion which can quickly approach a periodic sticking
solution (generally speaking, for smaller values of a), or
can exhibit long transients—sometimes called “transient
chaos” [25]—following the “shadow of the strange attrac-
tor” (generally speaking, for larger values of a). -

Direct simulation of the exact model exhibits a sim-
ilar behavior. Figure 1 presents a bifurcation diagram
showing a period doubling route to chaos for a = 0.5.
Note that this strange attractor is approached in the
same way as it would be in an experiment, namely, by
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slowly scanning the amplitude until the end of the period
doubling cascade is reached and a nonperiodic orbit is ob-
served. In simulations (A = 0.012) the strange attractor
is found to be stable for over 108 impacts. For A > 0.0118
and A < 0.019 a first crisis occurs which expands the
size of the strange attractor. Between A = 0.0121 and
A = 0.0122 a second crisis occurs which destroys this
strange attractor. For A > 0.0122 the orbit follows the
shadow of the strange attractor for a number of impacts
but eventually converges to a sticking solution (typically
after 102-10% impacts). In both experiments and simu-
lations, the pre-crisis (chaotic) dynamics and post-crisis
(eventually periodic) dynamics are usually easy to distin-
guish because the range of impact phases explored by the
ball suddenly widens after the crisis. In the simulation
shown in Fig. 1, the chaotic dynamics is confined to a
phase between —0.1 < 6/27 < 0.3 where as the (second)
post-crisis dynamics explores almost the entire range of
phases available. This feature provides a nice signature
to distinguish the pre- and post-crisis dynamics in both
experiments and simulations.

This general scenario of period doubling, chaos, crisis,
and sticking solutions (possibly with transient chaos) is
not confined to a few selected parameter values but is
generally observed for a wide range of a. Both examples
of crisis occurring in the bouncing ball system, and the
existence of multiple coexisting attractors, cannot be ex-
plained by a one-dimensional unimodal theory, and pro-
vide the first indication of the need for a two-dimensional
theory.

10

FIG. 2. (a) Three-dimensional plot of a
chaotic trajectory. (b) Schematic of the
sheeted structure governing the evolution of
the chaotic trajectory.
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FIG. 3. Two-dimensional
plot of a chaotic trajectory in
the bouncing ball system. Inset
shows template governing the
evolution of the orbits.

III. BOUNCING BALL TEMPLATE

The first step in analyzing the structure of the chaotic
set in the bouncing ball system is the identification of
a template which captures the organization of its pe-
riodic orbits [19]. The template is a nice (canonical)
representation of the stretching, folding, and twisting
of phase space resulting in a particular chaotic form.
To visualize the template arising in the bouncing ball
system I plot a chaotic orbit in the three-dimensional
space, (sin(wt),v(t),z(t)), where the first coordinate is
the table’s (normalized) time dependent forcing ampli-
tude, and the remaining coordinates are the ball’s veloc-
ity and height.

Inspection of Fig. 2(a) reveals a bandlike structure with
a half twist occurring where the ball reverses velocity
when it hits the table, and an additional smaller fold on
the outer edge of the band near the top of the figure. A
schematic of the sheetlike structure is presented in Fig.
2(b). A template is nothing more or less than this sheeted
structure collapsed to a single sheet and moved by a
sequence of isotopes to a standard form. This sheeted
structure is perhaps easier to see in Fig. 3. Here the
pre-image of the fold can be traced back to its impact
point with the table. The impact phase of the fold point
is in the vicinity of 6 =~ 0. The folding of the strange
attractor in phase space occurs in the region where the
table’s impact velocity is maximal: roughly, orbits hit-
ting at phases greater or lesser than this value get less of
a kick from the table and hence do not travel as high.

Figure 4 shows how this sheeted structure can be put
into a template of standard form. In Fig. 4(a) the evo-
lution of a small section of an unstable manifold (repre-
sented by an arrow) is shown as it is carried by the tem-

full twist

FIG. 4. Transformations taking the template found in the
phase space to a template in standard form.
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plate. To reach a canonical form I first pull the fold point
all the way to the left (thus going from a pruned to an
unpruned system), and second identify and cut through
the trajectory of the fold point. In the language of Cvi-
tanovi¢, Gunaratne, and Procaccia [5], this fold point is
a primary tangency. As shown in Fig. 4(b), each branch
of the template is now given a symbolic label. I also put
the insertion layer of the template in standard form (back
to front) and slide all the branch twists to the top of the
diagram [4]. The template of the bouncing ball system
in standard form is shown in Fig. 4(c). At this point
I notice that by subtracting a full twist from the entire
template I arrive at a horseshoe template in standard
form [Fig. 4(d)]—thus, the template in the bouncing ball
system for the parameter range considered is the horse-
shoe with a global torsion of —1. In the next section I
verify that the template identified is correct by compar-
ing topological invariants calculated from the horseshoe
template and those extracted directly from a chaotic time
series.

IV. BRAID ANALYSIS

A braid analysis of a low-dimensional chaotic time
series consists of four steps once an appropriate three-
dimensional space is created [19]: (i) the periodic orbits
are extracted by the method of close recurrence [22,26],
(ii) the braid type of each periodic orbit is identified and
the orbits are ordered by their two-dimensional forcing
relationship [11,27], (iii) a subset of braids is selected
which has maximal forcing and which forces the orbits
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extracted in step (i), and (iv) if possible, an attempt is
made to verify that some of the predicted orbits [not
originally extracted in step (i)] are found in the system.

In practice, steps (i) and (ii) are greatly simplified if
the template or knot holder organizing the flow can be
identified using the procedure described by Mindlin and
co-workers [4,19,28,29]. Knowledge of the template helps
in obtaining the symbolic names of the periodic orbits
and in calculating the forcing relationship for the specific
braids in that template. For instance, if the template is
identified as a two-branch horseshoe knot holder (as is
the example studied in this paper), then the theory of
quasi-one-dimensional (QOD) orbits of Hall [6,27] can
be applied to simplify the analysis.

Although template identification is very valuable, it
is not essential for a braid analysis, nor is the symbolic
identification of the extracted orbits. In the worst case,
a braid analysis does require that the the braid conju-
gacy class of each extracted periodic orbit be identified
(see Elrifai and Morton [30], or Jaquemard [31] for algo-
rithms), and that the minimal Markov model (a “train
track” in the language of Thurston) can be constructed
for each braid (see Bestvina and Handel [11], Los [12],
and Franks and Misiurewicz [13] for algorithms). Algo-
rithms exist for both of these steps, although the most
computationally efficient version of the braid conjugacy
algorithm is probably not an effective solution for braids
beyond period 8.

To illustrate braid analysis I simulated the bounc-
ing ball system for 10° impacts with system parameters
a = 0.5, w = 2m60, and A = 0.01215. The resulting next
impact map, (¢r, Pr+1), P = Ok /27, is shown in Fig. 5.
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FIG. 5. Next phase map for
the bouncing ball system. In-
set shows expanded view of the
region near the maximum.
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The many leaves of this return map once again indicates
that the symbolic dynamics of this system should exhibit
departures from that predicted by a one-dimensional uni-
modal theory. The inset of the Fig. 5 shows an expanded
view of the region surrounding the maximum of the map.
Three distinct leaves are visible in this region and this
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suggests that, to a first approximation, the symbolic dy-
namics of the system should be describable by a a three
step pruning front.

To extract the (approximate) periodic orbits by the
method of close recurrence I first convert the next im-
pact map from the sequence of values (¢, px1) directly
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FIG. 6. Periodic orbits extracted from a chaotic time series. The exponent sum identifies the orbit up to braid type. The
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into a symbol sequence of 0’s and 1’s. In this particular
instance, I found that an adequate symbolic description
(at least up to period 11 orbits, or approximately one
part in 2!!) is obtained by choosing the maximum value
of the next impact map at the three leaves shown in Fig.
5. Orbits passing to the left of the maximum in the vicin-
ity of a given layer are labeled zero, and those to the right
are labeled one. Next I search this symbolic encoding for
each and every periodic symbol string. Every time a pe-
riodic symbol string is found I calculate its (normalized)
recurrence and then save the instance of the orbit with
the best recurrence. The advantage of this procedure of
orbit extraction is that it is exhaustive. I search for ev-
ery possible orbit up to a given period. In these studies
I searched for all orbits between periods 1 and 11. Some
of the extracted periodic orbits are shown in Fig. 6.

The resulting spectrum of periodic orbits up to pe-
riod 11 is shown in Table I. Simple topological invariants
(linking numbers and relative rotation rates) of the ex-
tracted orbits are calculated and compared with those of
a horseshoe with a global torsion of —1. There are no
discrepancies. This indicates that—at least to this level
of resolution—the template is correctly identified and the
symbolic partition is adequate. The orbits present in (the
full shift) complete hyperbolic system, and not present in
the tables in the Appendix are said to be pruned. Our
goal is to predict as well as possible the pruned spectrum
from the chaotic time series.

The symbolic label (up to braid type) can also be de-
termined by considering' simple and easily computable
braid invariants. For instance, as pointed out by Hall

TABLE I. Spectrum of low-period orbits extracted from a
‘chaotic time series of the bouncing ball system (all orbits with
€ < 0.01 are shown). Extracted orbits and their (best) nor-
malized recurrence are recorded. Note that in this particular
example all saddle-node partners are detected in pairs.

P|cp €(Pk, dr+pP)| P | cp €(Pk, P+ P)
st 1 0.001315 s1y] 1011101010 | 0.000 686
s2] 10 0.000185 sio| 1011101011 | 0.001 030
si| 1011 0.000265 s30| 1011111010 | 0.000771
sg| 10110 0.000254 s30| 1011111011 | 0.001 599
sg| 10111 0.000546 s30| 1011111110 | 0.001 274
ss| 101110 0.000347 s3] 1011111111 | 0.000510
sg| 101111 0.000119 sto| 1011010111 | 0.001 372
53| 1011110 | 0.000262 s30| 1011011110 | 0.004 542
s3| 1011111 | 0.000585 s30| 1011011111 | 0.003 181
s3| 10111010 | 0.000069 s1;| 10111111110| 0.002 397
52| 10111110 | 0.000396 s11] 10111111111 0.002 669
s2| 10111111 | 0.001261 52,1 10111111010| 0.005078
s3] 10110110 | 0.000033 52,1 10111111011| 0.001 549
s3] 10110111 | 0.000097 | s3;| 10111101010| 0.000 130
si| 101111110| 0.000473 s3] 10111101011/ 0.000 372
s3] 101111111 0.002288 s}1| 10111101110| 0.000510
s3] 101111010| 0.000147 | s%,| 10111101111| 0.001 238
s3] 101111011 0.001211 s3,| 10110101110| 0.002 779
sa] 101101110| 0.000199 s3,] 10110101111 0.002 854
s5| 101101111 0.000086 s3,] 10110111110/ 0.002673
s3,] 10110111111 0.001730
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[27], the exponent sum (simply the sum of braid cross-
ings in the example) is a complete invariant for horseshoe
braids up to period 8 (see Table II). Also, as inspection
of the table in the Appendix reveals, the exponent sum
manages to distinguish most of the the pseudo-Anosov
horseshoe braids of periods 9, 10, and 11 as well. Thus,
I see that an easily determined quantity measured from
a time series leads to the conclusion that the flow con-
tains a chaotic invariant set—without the calculation of
more detailed quantities such as fractal dimensions or
Lyapunov exponents.

The goal of a braid analysis is to find a small subset
of orbits, called a “basis set” [7], which forces the the
observed periodic orbit spectrum. One sensible way to
proceed in identifying such a collection of orbits is to
calculate the spectrum of orbits forced by a few high
entropy orbits to see if they can capture most or all of
the observed spectrum. If some orbits are left out then
they are systematically added to the basis set until all
the orbits in the observed spectrum are captured.

Using the tables in the Appendix, I find that the high-
est entropy orbit in this particular data set is s2 (hy =
0.397) which happens to be a quasi-one-dimensional or-
bit. Thus, using the results of Hall [6,27], I calculate
the forced spectrum of this orbit by one-dimensional uni-
modal kneading theory [32]. I find that up to period 11
the s2 braids force s3, (s},), si, s%;, 83, s}, 830, 82,
s2,, st, slo, 83, 8L, 83, si. There are still many orbits

TABLE II. Exponent sums for horseshoe braids up to pe-
riod 8: standard horseshoe [e;(b)] and horseshoe with a neg-
ative full twist [e;(b—1)]. Orbits with the same exponent sum
are braid conjugates. See Ref. [27] for the explicit conjuga-
tions.

cp es(b) e(b-1) cp es(b) es(b-1)
0,1 0 0 101111° 18 -24
10 1 -1 101101° 16 -26
109 2 -4 1001019 14 -28
1011 5 -7 100111? 14 -28
1009 3 -9 1001109 12 -30
10119 8 -12 100010° 10 -32
10019 6 -14 100011? 10 -32
10009 4 -16 100001° 8 -34
10111° 13 -17 1000009 6 -36
100101 9 -21 1011111¢ 25 -31
100119 9 -21 10111010 23 -33
10001? 7 -23 10110119 21 -35
100009 5 -25 10010119 19 -37
10011119 19 -37
10010109 17 -39
10011109 17 -39
10011019 17 -39
10001019 15 -41
10001119 15 -41
10001001| 13 -43
10001109 13 -43
1000010° 11 -45
10000119 11 -45
10000019 9 -47
1000000 7 -49
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unaccounted for in the observed spectrum. I thus exam-
ine the orbit with the next highest entropy. It is the s§
(hg = 0.377) orbit. The s§ braid is not QOD. Its forced
spectrum can be calculated either by obtaining the train
track for this braid (and the associated Markov model)
[11], or by the method of pruning fronts briefly illustrated
in Sec. V. Using a train track calculation I find that the
s§ braid forces 53, (s%1), so (s30), 83, st (%), 87, 5,
si,, 83, 82, si, s3, si. Comparing the spectrum forced
by the union of these two orbits with the observed spec-
trum (Table I), I find that only one orbit is unaccounted
for, the finite order braid s3, which is the maximal or-
bit in the observed data set in terms of one-dimensional
unimodal theory.

Adding this orbit to the collection I determine that a
basis set which accounts for the observed spectrum—up
to braid type—is {s3, s3, s2}

V. PRUNING FRONTS FROM PERIODIC
ORBITS

I now attempt to predict the (low period) forced orbits
by using the extracted periodic orbits to systematically
construct an approximation to the pruning front [5]. The
braid analysis of the preceding section only specifies the
existence of orbits up to braid type. Thus, for instance,
it might only predict the existence of one individual peri-
odic orbit in a given saddle-node pair. The pruning front
procedure is more specific, it actually forces individual
periodic orbits as denoted by their complete symbolic la-
bel. Not unexpectedly, therefore, the basis set of periodic
orbits needed to construct an approximate pruning front
may be larger than that found in a braid analysis.

As a first step in obtaining an approximate pruning
front I plot the trajectory of a single chaotic orbit in the
symbol plane [5]. The data is a symbolic symbol string
constructed in the preceding section of the form

S =...8_-35_28_180-8518283...

where symbols to the left and right of sy are the past
and future symbols, respectively. The coordinates of the
symbol plane for a horseshoe are calculated from the well
ordered past (c;) and future (b;) symbols as follows:

i

=1 ij=1
and
D-1 i+1
Cl
y(s) = 5 CGi= E s_j mod 2
1=0 3=0

If s is an infinite symbol string generated by a chaotic
orbit, then D is infinity in the above sums. However,
since I am dealing with finite data sets, I approximate the
symbol plane coordinates of a point by taking D = 16.
In this way I can use a finite symbol string from a chaotic
trajectory to generate a sequence of points on the symbol
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plane. The resulting plot for the data is shown in Fig. 7.

An expanded view of the primary pruning front region
(center right of full diagram) is shown in the inset of
Fig 7. The two-dimensional nature of the data set is
indicated by the steps in the diagram. If the data set
was one dimensional, then a vertical pruning front with
no steps would be seen. Such vertical pruning fronts
are found, for instance, when the bouncing ball system is
much more dissipative (a =~ 0.1). As a rule of thumb, the
depth of the steps increases as the dissipation decreases.
In this example, the steps are easier to see in the iterates
of the pruning front.

Now, to construct an approximate pruning front I plot
all the periodic orbits (periods one and eleven) extracted
in the preceding section on the symbol plane and exam-
ine their location in the region of the pruning front. This
is shown in Fig. 8 in the same region as that found in the
inset of Fig. 7. The periodic orbits closest to the right
and the center (i.e., closest to the pruning front suggested
by Fig. 7) are selected as a basis set for constructing an
approximate pruning front. Labels for these innermost
periodic orbits are indicated in Fig. 8, and the last digit
in the symbolic label (for the saddle-node partners) is
determined by whether the rightmost point of the orbit
lands above (1) or below (0) a line through the center of
the symbol plane. To construct the approximate pruning
front I take the orbit in each saddle-node pair which is
larger (rightmost) by unimodal ordering. Thus in this
example I construct the pruning front from the set of pe-
riodic orbits (from bottom right to center): s3(0), s3,(0),
%,(0), 54(0), s3(L).

An approximate pruning front is then constructed from
a continuous sequence of horizontal and vertical line seg-
ments connecting these periodic orbits:

vos3] =
(6.10110110,01101101.10110110),
hl[sg’ 3?0] -
(01101101.10110110,01101101.1011011110),
Vlisgvsio] —
(01101101.1011011110,0111101101.1011011110),
ha[s%o, 83:] —
(0111101101.1011011110,0111101101.10110111110),
V(s 811] 2
(0111101101.10110111110,01111101101.10110111110),
h3[3?1733] -
(01111101101.10110111110,01111101101.101101110),
v3[3?1’ 33] -
(01111101101.101101110,011101101.101101110),
h4[33’55] -
(011101101.101101110,011101101.101111011),
va[ss, s3] =
(011101101.101111011, 110111101.101111011).

By construction, this pruning front generates the same
periodic orbit spectrum—up to period 1l—as that
recorded in Table 1.

Like the braid analysis, beyond period 11 this prun-
ing front should begin to generate fewer orbits than are
actually present. Both of the pruning methods illus-
trated here are systematic approximations in the sense
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TABLE III. Topological invariants for horseshoe braids up to period 11 (periods 1-9 previously
published by Hall [27]): name, code, permutation, Thurston type, rotation number, rotation in-
terval, height, depth, exponent sum, and topological entropy of the braid calculated from a train
track [11].

[P | er | e | Type| p(P)| pi(P) | a(P)| r(P)| e(P)| ha(P)|
st 1 1) fo N/A| N/A 1/2 | 172 ] o 0
s3 | 10 (12) fo 1/2 1/2 1/2 | 1/2 | 1 0
s3 | 107 (123) fo 1/3 | [1/3 1/3 ] 1/2] 2 0
s; | 1011 (1324) red | 1/2 | [1/2 1/2 | 1/27] 5 0
s; | 1009 (1234) fo 1/4 1/4 1/4 | 1/2 | 3 0
st | 10119 (13425) fo 2/5 2/5 2/5 1 1/2 | 8 0
sz | 10019 (12435) pA 2/5 | [1/3,1/2)| 1/3 | 1/3 | 6 0.544
s | 10009 (12345) fo 1/5 1/5 1/5 | 1/2 | 4 0
sg | 101117 (143526) red 1/2 1/2 1/2 | 1/2 | 13 0
s& | 100101 (1352486) red | 1/3 | [1/3] 1/3 | 1/2 | 9 0
ss | 100119 (124536) red 1/3 | [1/3] 1/3 | 1/2 | 9 0
s¢ | 100019 (123546) pA 1/3 | [1/4,1/2]| 1/4 | 1/4 | 7 0.633
sg | 100009 (123456) fo 1/6 | [1/6] 1/6 | 1/2 | 5 0
st | 1011119 (1453627) fo 3/7 | [3/7] 3/7 | 1/2 | 18 0
s2 | 1011019 (1462537) pA 3/7 | [2/5,1/2] | 2/5 | 2/5 | 16 0.442
s3 | 1001019 (1362547) pA 3/7 | [1/3,1/2]| 1/3 | 1/2 | 14 0.477
s7 | 1001119 (1254637) pA 3/7 | [1/3,1/2]| 1/3 | 1/2 | 14 0.477
s3 | 1001109 (1356247) fo 2/7 | [2/7] 2/7 | 1/2 | 12 0
s5 | 1000109 (1246357) pA 2/7 | [1/4,1/3] | 1/4 | 1/2 | 10 0.382
sy | 1000119 (1235647) pA 2/7 | [1/4,1/3] | 1/4 | 1/2 | 10 0.382
s3 | 1000019 (1234657) pA 2/7 | [1/5,1/2)| 1/5 | 1/5 | 8 0.666
sy | 1000009 (1234567) fo 1/7 | [1/7) 1/7 | 1/2 | 6 0
ss | 10111010 (15472638) red 172 | [1/2] 1/2 | 1/2 ] 23 0
ss | 10111119 (15463728) red 1/2 | [1/2] 1/2 | 1/2 | 25 0
s3 | 10110117 (14725638) fo 3/8 | [3/8] 3/8 | 1/2 | 21 0
sg | 10010119 (13725648) pA 3/8 | [1/3,2/5] | 1/3 | 1/2 | 19 0.346
8| dooinos | (sosrzes) | oA | /e | (vaasal | s | e | v | o
S8 1 p ’ .
sg | 10011119 (12564738) pA 3/8 | [1/3,2/5] | 1/3 | 1/2 | 19 0.346
s§ | 10011019 (12573648) pA 3/8 | [1/3,1/2] | 1/3 | 1/3 | 17 0.498
s§ | 10001001 (13572468) red | 1/4 | [1/4] 1/4 | 1/2 | 13 0
s3 | 10001019 (12473658) pA 3/8 | [1/4,1/2]| 1/4 | 1/2 | 15 0.569
s3°| 10001119 (12365746) pA 3/8 | [1/4,1/2]| 1/4 | 1/2 | 15 0.569
sg*| 10001109 (12467358) red 1/4 | [1/4] 1/4 | 1/2 | 13 0
si?| 10000109 (12357468) pA 1/4 | [1/5,1/3]| 1/5 | 1/2 | 11 0.459
s%i 10000112 (12346758) pA 1/4 | [1/5,1/3]| 1/5 | 1/2 | 11 0.459
s3*| 10000019 (12345768) pA 1/4 | [1/6,1/2)| 1/6 | 1/6 | 9 0.680
s3°| 10000009 (12345678) fo 1/8 | [1/8] 1/8 | 1/2 | 7 0
sy | 101111117 (156473829) fo 4/9 | [4/9] 4/9 | 1/2 | 32 0
s3 | 101111019 (156482739) pA 4/9 | [3/7,1/2]| 3/7 | 3/7 | 30 0.397
s3 | 101101019 (157382649) pA 4/9 | [2/5,1/2] | 2/5 | 1/2 | 28 0.377
ss | 101101119 (148265739) pA 4/9 | [2/5,1/2] | 2/5 | 1/2 | 28 0.377
s§ | 100101109 (147368259) red 1/3 | [1/3] 1/3 | 1/2 | 22 0
ss | 100101119 (138265749) pA 4/9 | [1/3,1/2] | 1/3 | 1/2 | 26 0.447
sq | 100101019 (137482659) pA 4/9 | [1/3,1/2]| 1/3 | 1/2 | 24 0.507
s3 | 100111019 (126583749) pA 4/9 | [1/3,1/2] | 1/3 | 1/2 | 24 0.507
sg | 100111119 (126574839) pA 4/9 | [1/3,1/2] | 1/3 | 1/2 | 26 0.447
s3°| 100111109 (136758249) red 1/3 | [1/3] 1/3 | 1/2 | 22 0
ss'| 100110109 (136748259) red 1/3 | [1/3] 1/3 | 1/2 | 22 0
s3?| 100110119 (125836749) red 1/3 | [1/3] 1/3 | 1/2 | 22 0
s3®| 100110019 (136824759) pA 1/3 | [2/7,1/2]| 2/7 | 2/7 | 20 0.605
s3*| 100010019 (135824769) pA 1/3 | [1/4,1/2]| 1/4 | 1/3 | 18 0.537
s3°| 100010119 (124836759) pA 1/3 | [1/4,2/5]| 174 | 1/2 | 20 0.492
53°| 100010109 (124758369) pA 1/3 | [1/4,1/2)| 1/4 | 1/3 | 18 0.537
s87| 100011109 (124768359) pA 1/3 | [1/4,1/2]| 1/4 | 1/3 | 18 0.537
s3®| 100011119 (123675849) pA 1/3 | (1/4,2/5] | 1/4 | 1/2 | 20 0.492
s3?| 100011019 (123684759) pA 1/3 | [1/4,1/2)| 1/4 | 1/3 | 18 0.537
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ha(P)|
)| e(P)| S
P
(P)| ( 14| 095
I 1 1/2 14 0.605
:(P) 2/9 2 605
pi 1/ 16 60
| o(P) 2/9] 1/5 1/2 16 0'295
e .
fo 2/9 [1/5,1/2] 1/5 1/2 12 0.492
TP 69) PA 1/3 1/5,1/ 1/5 1/2 2 687
7824 [ 4) 1 0.
N - (135 83579) PA 1/3 [1/5’1/3] 1/6 1/2 10 0
P | e 011007 (1246 4769) PA 2/9 (1/6,1/ 11 1/6 1/7 s 5
20 138001003 (osarascs) oA | 2o woasa | 1 AR 0272
2| g 101 (123 69) pA 2/9 1/7,1 1/9 1/2 9 '
LH 0000 0 5784 [ 2 3 0

2l 1119 (123 79) PA 2/9 1/9] 1/ 1/2 1
EH 0000 0 4685 | 2 4 0

23| 109 123 9 A 9 2 1/ 2
.sg4 100001 0° ( 23457869) p 1/2 [1/2] /2 1/2 35 0

2 000109 (1 6879) fo 1/ [1/2] 1 1/ 35 0.473
895 100 10 2345 d 2 /5 2 .

82 00001 ! (1 56789) re 1/ [1/2] 2 1/ 33 0.447

281 10 00017 (1234 27410) red 1/2 (2/5] 2/5 3/8 31 594
2| 1000 0 5839 0) d 8 0

27 00001 (16 2831 re 2/5 [2/5] 3/ 2/5 33 438
o 10(1)(1)101013 (16572239210) red 2/5 13/ 8’1/3% 13 il 0438
Sg N

10 019 657 10) d 5 1/ 1/3 2

T 11 (1 674 re 2/ 1/3, 1/ 9 447
S10 111 0 392 [ 7] 2 0.

3 10 1111° (158 8310) A 2/5 /3,3/ 1/3 1/2 44
S1o0 111 675 p 1 2] 31 0.5

10 111 492 10) A 5 1/ /3 5

3 10 (1 374 P 2/ 1/3, 1 2/ 7 447

S1o0 110 o 68 ( 2] 2 0.
10 119 592 10) A 5 1/ 1/3 3

i 11 (1 375 p 2/ 1/3, 1/ 1 438

sto 1101111 68 [ 2] 3 0.
10 01¢ 492 10) A 5 1/ 1/3 5

5 11 (1 584 P 2/ 1/3, 2/ 9 438

| Jo11o 0 67 [ 2) 2 0.
10 019 392 10) A 5 1/ 1/3 2

6 11 (1 925 P 2/ 1/3, 1/ 9 394

810 0101101, 76 [ 2] 2 0.
10 118 483 10) A 5 1/ 1/3 2

7 11 (1 926 P 2/ 1/3, 1/ 3 447

810 010 0 75 [ 2] 3 0.
10 109 483 10) d 5 1/ 1/3 2

8 11 (1 675 re 2/ 1/3, 1/ 1 438

S10 010 0 92 [ 2] 8 0.
10 108 384 10) A 5 1/ 1/3 5

9 10 (1 485 P 2/ 1/3, 2/ 29 438
S10 0010 0 692 ) [ /7] 3 0.

w04 1011? (137 8410 PA 2/5 1/3,3 1/ 1/2 9
s10 0010 0 5926 ) [ /2] 3 2 0

1 1001 (137 2510 PA 2/5 1/3,1 1/ 1/2 7 02
s1o 011 0 849 [ 2] 2 0.3

10 11° 376 10) A 5 1/ /3 2

12 10 (1 924 P 2/ 1/3, 1 1/ 5 302
810 0011 0 685 ) [ /2] 10 2 0.

130 4 10107 (137 9310 PA 2/5 1/3,1 3/ 1/2 5 337
S10 0011 0 7584 ) [ e 2 0.

1a| 4 11109 (126 8410 pPA 2/5 /10] 2/ 1/2 3 337
S10 0011 0 7593 ) 3 /3] 7 2 0.

! 11119 (126 7510 PA 3/10 2/7,1 2/ 1/2 3 337
S10 0011 0 8493 ) [ /3] 4 2 0.

18 1 1101¢ (126 8410 fo 3/10 2/7,1 1/ 1/2 3 544
2 Loom 0 9376 ) 0 | /3] 4 2 0.

17 g 01019 (125 2510 pPA 3/1 1/4,1 1/ 1/2 7 593
S10 0011 0 8369 ) ( /3] 4 2 0.

HER! 0111} (147 3610 PA 3/10 1/4,1 1/ 1/2 5 612
5| 10011 0 9258 ) 0| | /3] 4 2 0.

190 4 01109 (147 8510 PA 3/1 1/4,1 1/ 1/2 1 612
S10 0011 0 9247 ) 0 | /2] 4 2 0.

201 4 00109 (136 78610 PA 3/1 1/4,1 1/ 1/4 1 593
810 0011 0 924 ) [ /2] 4 2 0.

21| 4 00119 (135 4710 PA 2/5 1/4,1 1/ 1/4 5 544
S10 0011 0 9258 ) [ /2] 4 2 0.

22| 4 00119 (136 3610 PA 2/5 1/4,1 1/ 1/2 7 337
810 0001 0 8479 ) 0| [ /2] 4 2 0.

23| 4 00109 (125 8510 PA 3/1 1/4,1 1/ 1/2 3 337
S10 0001 0 9376 ) [ /2] 4 2 0.

24| 0110} (124 7610 PA 3/10 1/4,1 1/ 1/2 3 337
810 0001 0 8593 ) [ /2] 4 2 0.

| 0111 (124 4710 PA 2/5 1/4,1 1/ 1/2 3 612
S10 0001 0 8692 ) [ /3] 4 2 0.

26| 4 0101° (135 4610 pA 2/5 1/4,1 1/ 1/2 1
810 0001 0 8792 ) [ /3] 4 2 0

21| 01009 (135 8510 pA 3/10 1/4,1 1/ 1/4 7 559
S10 0001 0 7694 ) 0| [ /3] 4 1 0.

2l 1 11007 123 9410 PA 3/1 1/4,1 1/ 1/2 9 544
o oo 11013 E 12372233510; pA 3/10 H 41/2] 1/5 1/3 ” 0559
53 0 7 0 5 '

30| 4 11118 (124 3610 PA 3/1 1/5] 1/ 1/2 9 559
810 00011111, 7859 ) [ /2] 5 1 0.

1 11109 (124 8510 PA 1/5 1/5,1 1/ 1/3 9 544
33| 10001 o 6947 ) [ /5] 5 1 0.

32| 10109 (123 8610 red 3/10 1/5,2 1/ 1/3 1 559
S1o 0001 0 7935 ) [ /2] 5 2 0.

331 1 1011? (124 6810 pPA 3/10 1/5,1 1/ 1/2 9
S1o 0001 0 7924 ) [ /2] 5 ! 0

34| 4 1001° (135 8710 pPA 3/10 1/5,1 1/ 1/3 7 362
810 0001 1 6935 ) [ /5] 5 1 0.

351 4 1000 (124 8610 pA 3/10 1/5,2 1/ 1/2 5 621
810 0000 0 5947 ) [ /2] 5 1 0.

36 4 10019 (123 4710 PA 3/10 1/5,1 1/ 1/2 7 621
S10 0000 0 5869 ) [ 6 1 0.

7 10115 (123 4610 PA 3/10 1/5] 1/ 1/2 7 362
S10 0000 0 5879 ) [ /4] 6 1 0.

38 4 10109 (123 9510 PA 1/5 1/6,1 1/ 1/2 5 508
s%o 0000 0 4786 ) [ /2] 6 1 0.

391 4 1110} (123 8610 red 1/5 1/6,1 1/ 1/2 3 508
S0 0000 0 4795 ) 0| [ /2] 6 1 0.

40 4 11119 (123 5710 PA 3/1 1/6,1 1/ 1/2 3 690
S10 0000 o 6893 ) o] | /4] 7 1 0.

a1 4 11019 (124 6810 pPA 3/1 1/6,1 1/ 1/2 1
S10 0000 0 5794 ) [ /3] e 1 0

421 4 11007 (123 8710 PA 1/5 1/7,1 1/ 1/8
S10 0000 0 4695 ) [ /3] 8 9

43 9 01009 (123 9610 PA 1/5 1/7,1 1/ 1/2
s10 0000 0 4587 [ /2] 10

aa| 4 1019 123 710) A /5 8,1 1/

00 5 P 1 1
) o 51234‘;?36810; | i

461 10 1107 (1234 9710 PA 1/10
810 0000 0 4568 )

471 1o 0010° 123 79810 fo
510 1000000113 2123456 8910)
| 10000 19 234567
S?g 1000000000 (1

] 000000,

Sll 100
830

4519
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TABLE III. ( Continued).

(P)| e(P)| ha(P)]
g(P)| r
(P)| pi(P) 50 [0
Type| p al | A ase o
P e mp 2| fo 5/11 [451/9 1/2) | 4/9 | 4/9 46 0.331
| 10111111110 (1675849328311) pA | 5/11 {347,1/ 2| 37 lg 46 0331
T 1 11 ’ 1
s11 19| (167584 A | 5/ 2| 3/7 0.344
2 | 1011111101° 931028411)| p 11| [3/7,1/ 1/2 | 44
83, 19| (1675 A | 5/ 2] | 2/5 0.412
3 | 10111101010 102759311)| p 11| [2/5,1/ 1/2 | 42
s 91 (159310 5/11 51 1/ .344
s%i 10110101(1)13 E1693341027511) Pﬁ 5§11 [2/5,1/21 2;5 1/2 | 44 g 3
| e (unoaressoni)| pA | a1 | | 1 3 | oass
7| 10 27685 11 1/2
STy 12| (1410 fo 4/ 8| 1/3 0.302
s | 1011011111° 9378411) 1| [1/3,3/ 1/2 | 36
8, ol (151026 4/1 1/3 | 1/ 0.302
10119| ( PA 2/5 6 .
(B ot (a3 || % | o
1 5 11 ! 1 ]
811 09| (149378 A | 4/ 2| 1/3 0.466
111 1001011010° 86102511)| p 1 [1/3,1/ 1/2 | 40
sil 0| (14937 5/1 1/3 / 0.497
11109| ( PA 1/2 8 .
w5 G 1 | |
1 : 76 11 ) 1
811 1° (14102 A 5/ 2} 1/3 0.486
4| 10010111012 851027611)| p 11| [1/3,1/ 1/3 | 34
11 19| (1493 A | 5/ 2| 1/3 0.510
151 10010101019 102768511)| p 11| [1/3,1/ 1/3 32
513 19| (1394 A 4/ 2] | 1/3 0.510
it| 10010101119 37102611)| p 1| [1/3,1/ 1/3 | 32
811 | (14859 A | 41 1/3 0.486
0110 P 1/2 4
| o G oA | 4 | s | 1| | o
518 09| (1487102 A | 4/11 ’ 2] | 173 | 1 0.497
190 1001110010° 6102511)| p 1] [1/3,1/ 1/2 | 38
19 o (148793 5/1 1/3 | 1/ 0.466
1109| ( A 1/2 :
) oo Gy 1| o i A
53 1001110101‘1’ (1276941038i11) PA | 5/11 [1/3’1/2] /3| 1/2 36 0.302
| o] sy 08 | S | e |
2 9 11 ’ 1
s33 19| (127685 A 4/ 5| 1/3 0.288
241 10011111119 695102411)| p 11| [1/3,2/ 1/2 | 38
s11 0% (1378 A 4/ 8| 1/3 0.486
25| 1001111110° 694102511)| p 11| [1/3,3/ 1/3 | 34
281 10011110109 10269411)| p 1| [1/3,1/ 1/3 | 32
83y ol (13785 A | 41 /3] 1/ 0.302
27| 1001111011° 10249511) p 1| [1/3,1/2] 1/2 | 36
$27 ol (13786 4/1 1/3 | 1/ 0.486
11001 A 2/5 4
S -Tostiotont (aeoai0srsoin)| A | 4/ v | s v | 3| das
1 410 11 ’ 1
P 19| (1269 A | 4/ 21| 1/3 0.302
301 10011010119 5102611)| p 1} [1/3,1/ 1/2 | 36
39 o (137948 4/1 1/3 | 1/ 0.486
10109| ( PA 2/5 4 -
51 1001:31110‘1’ (1379486102513 pA | 4/11 [1/3,1§2} L8 | 173 2 | 05
532 100110111 it (1251037869‘;11) pA | a/11| [1/ 712 | 2/7 | 12 32 | 0538
533 10011011012» (1261037948611) pA 4/11 [2/7’1/2] 2/7 | 1/2 30 0
sit| 100 100101° (1371025948511) PA | 4/11 [2/1’1] 3/11\ 1/2 28 | 0.254
| i Gy 1 | v | x| |3 |
38 09| (147102 A | 3/11 ’ 2] | 1/4 | 1 0.486
37! 1001100110° 5894711)| p 1| [1/4,1/ /2 | 30
8§37 ol (136102 4/1 1/4 | 1/ 0.348
0110%| ( PA 1/2 6 .
sti 1000100111} (1351024312313 pA | 4/11 {3:1;3} 1/4 1?2 w | oo
3 5 11 ) 1
831 19| (136102 A 3/ 3| 1/4 0.513
491 10001001019 71025811)| p 1| [1/4,1/ 2/5 32
520 o| (13694 3/1 1/4 | 2/ 0.517
1009 | ( PA 1/2 4 .
i1 100013(1110()% (1369581024713 pA | 4/11 W:EM Dl 1a | s | oase
si 1008101101‘3 (1251037948211) pA | 4/11 [1/4’1 /24| 1/a ) 172 30 | 0.486
] oo (it 23 | vl b
4 7 11 ’ 2
s 0° (125948 A 4/ 2] 1/4 0.629
421 10001011109 86103711)| p 1| [1/4,1/ 1/3 | 28
811 o (12594 A | 411 2] | 1/4 0.629
41 10001010109 510378611)| p 11| [1/4,1/2] 1/3 28
811 19| (1249 A 4/ 2] | 1/4 0.513
471 1000101011° 610248711)| p 1] [1/4,1/ 2/5 | 32
37 1°| (1359 A | 4/ 2| 1/4 0.486
48\ 1000101001? 710359611)| p 1| [1/4,1/2] 1/2 30
s11 19| (1248 A | 4/1 2] | 1/4 0.486
13| 10001110019 10379511)| p 1) [1/4,1/2] 1/2 | 30
513 o1 (12486 A 4/1 2] | 1/4 0.517
5017710001110119 795103611)| p 11| [1/4,1/ 1/2 | 34
550 09| (1248 A | 4/ 77| 1/4 0.513
¢ 10001110108 796103511)| p 1| [1/4,3/ 2/5 | 32
s 09| (1248 A | 4/ 2] | 1/4 0.348
521 100011111 1 869510411) P 11 [1/411/ 1/2 26
s11 19| (1237 A 4/ 3] | 1/4 0.348
31 10001111119 861049511)| p 11| [1/4,1/ 1/2 | 26
33 10 (1237 A 3/ 3] 1/4 0.486
34| 10001111019 971024611)| p 11 [1/4,1/ 1/2 | 30
s11 09| (1358 A 3/ 2] | 1/4 0.486
2| 10001111009 61024711)| p 1 [1/4,1/ 2| 30
s o (13589 4/1 4| 1/ 4
séé 1000110100(1) (1237951048611) PA 4?11 [1/4,1/2] 1/4 1/2 | 28 02
s}ﬂ 10001 10101(1, (1236104879511) PA 3/11| [1/4,2/7) | 1/
s%’% 10001101115 51258947103611) pA
110
it 1000110110;
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TABLE III (Continued).

P e [ |

Type| p(P)| pi(P) |

a(P)| r(P)| e(P)| ha(P)

5321 10001100109
s$1| 10001100119
5821 10001100019
s$3| 10000100019
s$%| 10000100119
s%21 10000100109
s%¢| 10000101109
s$7| 10000101119
s$%1 10000101019
s%9| 10000101009
s77] 10000111009
s11| 10000111019
512 10000111119
s73| 10000111109
s11| 10000110109
s73| 10000110119
87| 10000110019
s17| 10000110009
s78| 1000001000°
572 1000001001°
532 1000001011
s%1| 10000010109
s32| 1000001110°
s32| 10000011119
s34 10000011019
s%2| 10000011009
s3%| 10000001009
837 1000000101°
532 10000001119
s32| 10000001109
s39| 10000000109

(1258103694711)| pA
(1247103589611)| pA
(1358102469711)| pA
(1357102469811)| pA
(1246103589711)| pA
(1247103695811)[ pA
(1236958104711)| pA
(1235104879611)| pA
(1235961048711)| pA
(1246971035811)| pA
(1246981035711)| pA
(1234871059611)| pA
(1234879610511)| pA
(1235897104611)| pA
(1235896104711)| pA
(1234710589611)| pA
(1235810469711)| pA
(1357910246811)| fo

(1246810357911)| pA
(1235710469811)| pA
(1234610589711)| pA
(1234697105811)| pA
(1234698105711)| pA
(1234589710611)| pA
(1234581069711)| pA
(1235791046811)| pA
(1234681057911)| pA
(1234571069811)| pA
(1234569810711)| pA
(1234579106811)| pA
(1234568107911)| pA

si1| 10000000119| (1234567910811)| pA
s32| 10000000019| (1234567810911)| pA
s3] 10000000009| (1234567891011)| fo

3/11| [1/4,1/3] | 1/4 | 1/2 | 26 0.348
3/11| [1/4,1/3] | 1/4 | 1/2 | 26 0.348
3/11| [2/9,1/2] | 2/9 | 2/9 | 24 0.655
3/11| [1/5,/2) | 1/5 | 1/4 | 22 0.616
3/11| [1/51/3] | 1/5 | 1/2 | 24 0.416
3/11| [1/51/3]| 1/5 | 1/2 | 24 0.416
3/11| [1/5,1/3] | 1/5 | 1/2 | 24 0.416
4/11| [1/5,1/2) | 1/5 | 1/2 | 28 0.583
4/11| [1/5,1/2] | 1/5 | 1/2 | 26 0.626
3/11| [1/5,1/2] | 1/5 | 1/4 | 22 0.616
3/11| [1/5,1/2] | 1/5 | 1/4 | 22 0.616
4/11| [1/5,1/2] | 1/5 | 1/2 | 26 0.626
4/11| [1/5,1/2] | 1/5 | 1/2 | 28 0.583
3/11| [1/51/3]| 1/5 | 1/2 | 24 0.416
3/11| [1/5,1/3]| 1/5 | 1/2 | 24 0.416
3/11| [1/5,/3]| 1/5 | 1/2 | 24 0.416
3/11| [1/5,1/2] | 1/5 | 1/4 | 22 0.616

2/11| [2/11] 2/11| 1/2 | 20 0

2/11| [1/6,1/5] | 1/6 | 1/2 | 18 0.241
3/11| [1/6,1/2] | 1/6 | 1/3 | 20 0.571
3/11| [1/6,2/5] | 1/6 | 1/2 | 22 0.566
3/11| [1/6,1/2] | 1/6 | 1/3 | 20 0.571
3/11| [1/6,1/2] | 1/6 | 1/3 | 20 0.571
3/11| [1/6,2/5] | 1/6 | 1/2 | 22 0.566
3/11| [1/6,1/2] | 1/6 | 1/3 | 20 0.571
2/11| [1/6,1/5] | 1/6 | 1/2 | 18 0.241
2/11| [1/7,1/4] | 1/7 | 1/2 | 16 0.393
3/11| [1/7,1/2] | 1/7 | 1/2 | 18 0.629
3/11| [1/71/2] | 1/7 | 1/2 | 18 0.629
2/11| [1/7,1/4) | 1/7 | 1/2 | 16 0.393
2/11| [1/8,1/3] | 1/8 | 1/2 | 14 0.517
2/11| [1/8,1/3] | 1/8 | 1/2 | 14 0.517
2/11| [1/9,1/2] | 1/9 | 1/9 | 12 0.692

/11| [1/11] /11| 1/2 | 10 0

that, given a periodic orbit spectrum up to period P,
these methods generate an exact spectrum up to some
period @, beyond which both methods then provide lower
bounds on the periodic orbit spectrum.

VI. CONCLUSION

I have illustrated how to determine the topological
form (the template) and how to estimate topological pa-
rameters directly from a chaotic time series generated by
a dissipative bouncing ball system. Two distinct tech-
niques were used to predict orbit forcing—a braid anal-
ysis and the pruning front approach. Both techniques
provide an effective procedure for calculating the orbit
spectrum of low-period orbits. Both procedures also pro-
vide information (a lower bound) for the spectrum of all
periodic orbits.

Each procedure for estimating the periodic spectrum
has distinct advantages and disadvantages. The braid
analysis does not require a symbolic partition, and is
thus useful in the cases (e.g., low dissipation) where de-
termining an exact, or approximate symbolic partition,
is problematic. The braid analysis is also based on a
rigorous mathematical foundation. The braid analysis,
though, only provides information about orbit forcing up

to braid type. The chief advantage of the pruning front
approach is that it provides information about individual
periodic orbits. Its chief disadvantage is that it, so far,
rests on a weaker mathematical foundation and requires
the construction of a symbolic partition.

In retrospect, I find it remarkable that such a small
subset of periodic orbits (which are rather easy to get
from experiment) contains so much topological and dy-
namical information about a (low-dimensional) flow. A
few low-period orbits are sufficient to determine the tem-
plate describing the stretching and folding of the strange
set. The template provides an upper bound to the topo-
logical entropy and is, in a sense, a maximally (i.e., a
full shift) hyperbolic set which can be formally associ-
ated with a (possibly nonhyperbolic) strange set. In this
paper I show how periodic orbits (and their associated
hyperbolic sets) can be used to obtain an approxima-
tion to a strange set which is probably not hyperbolic.
Formally, I might say that the hyperbolic set associated
with each pseudo-Anosov braid is embedded within the
strange attractor I am trying to describe in the sense that
the (possibly nonhyperbolic) strange set must contain at
least all the orbits forced by the extracted pseudo-Anosov
braid.
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APPENDIX: INVARIANTS

Topological invariants of horseshoe braids from periods
1-11 are shown in Table III.
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