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We demonstrate the existence of strange attractors in a simple dissipative mechanical system, a
bouncing ball subject to repeated impacts with a vibrating table.

I. INTRODUCTION

Chaos is an old term which has gained a new meaning in
the scientific community during the past few years. Chaos
theory studies the instabilities that arise in nonlinear sys-
tems. The instabilities are not the result of external noise,
but are inherent within the deterministic equations describ-
ing the system’s dynamics. It should come as no surprise
that deterministic equations can produce random results;
in fact, this is exactly how a computer’s random number
generator functions. What may come as a surprise is that
equations long used in physics (e.g., Newton’s equations)
can produce seemingly random results when nonlinear
terms are included. The irregular behavior of deterministic
systems is sometimes called “deterministic chaos” to dis-
tinguish the term chaos from its more colloquial usage. An
introduction to the field that includes an extensive collec-
tion of useful reprints has recently been published. '

Dissipative dynamical systems can exhibit a fascinating
chaotic solution known as a strange attractor. An attractor
of a dynamical system is simply where all the solutions go
after a long time; it is the asymptotic orbit for a dissipative
system. A strange attractor is loosely defined as anything
that is not a simple attractor. Simple attractors are what we
usually study in physics and consist of constant solutions
(equilibrium or fixed points), periodic solutions (limit cy-
cles), or quasiperiodic orbits (motion which is periodic in
each variable). In this paper we describe a simple mechani-
cal apparatus that allows us to see and hear the formation
of a strange attractor in real-time.

Strange attractors that arise in mechanical systems have
been studied by several researchers.” Most notable in terms
of its experimental simplicity is the mechanical system con-
structed by Moon and Holmes consisting of a metal beam
subject to periodic oscillations at one end and magnetic
forces at the other.? In their mathematical model of the
beam, Moon and Holmes assume that the beam oscillates
only in its lowest-order mode. Despite this assumption,
they manage to obtain good qualitative agreement between
the strange attractor that arises in the modeling equations
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Fig. 1. Bouncing ball. A ball is free to bounce on a table which moves
sinusoidally up and down.
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and the strange attractor from the experimental system.
Still, in order to explore the connection between chaos in
equations and chaos in experimental systems (e.g., the role
played by noise) it would be advantageous to work with a
system where the correspondence between the experimen-
tal apparatus and the mathematical model is assured.

Such a mechanical system has been recently discussed in
this Journal.* The model consists of a ball that is free to
bounce inelastically on a table which moves sinusoidally up
and down (Fig. 1). An experimental system to study the
repeated impacts of a ball with a sinusoidally vibrating ta-
ble is simple to construct from a loudspeaker and a ball
bearing. The bouncing ball system appears to have been
studied theoretically for the first time by Holmes,> who
showed the existence of periodic and chaotic motion (i.e.,
strange attractors) for suitable parameter values and initial
conditions.

In this paper we show how to explore the chaotic mo-
tions of a bouncing ball by experimentally constructing a
surface of section map. The simplicity of the system recom-
mends itself to study by both theoreticians and teachers.
The latter will especially find it helpful in explaining the
basic concepts of nonlinear dynamics.

II. STRANGE ATTRACTORS AND IMPACT MAPS

A Poincaré surface of section map is a convenient and
useful technique through which to view the periodic and
chaotic motions of a dynamical system.® A more natural
map to consider in the bouncing ball system is the so-called
“impact map.” This map is equivalent to a surface of sec-
tion map but is easier to obtain experimentally. The impact
map is defined by recording the phase of the periodic forc-
ing and relative force (or possibly velocity) of each impact
between the ball and the table. If T is the period of the
oscillating table, then the horizontal axis is the time modu-
lo T. The vertical axis indicates the impact force between
the ball and the table. At each collision, a dot is placed on
the plot indicating a given impact’s strength and phase.

The initial condition for an orbit of the bouncing ball
consists of specifying the strength and phase of the first
impact. The future evolution of the orbit is represented by
the unique sequence of impact dots generated by a particu-
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Fig. 2. Block diagram of impact map circuit.
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lar initial condition. The set of all initial conditions of the
impact map defines a certain dissipative (area contracting)
mapping of a cylinder (since the horizontal axis is topologi-

cally a circle) onto itself.

The “attractor” (i.e., the asymptotic limit set) for a giv-
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en collection of initial conditions can be exceedingly sim-
ple, or complex. For some initial conditions and parameter
values the attacting set will simply be a collection of sepa-
rate dots showing periodic motion. The number of distinct
dots indicates the period relative to the forcing frequency.
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Fig. 3. Impact map circuit.

1. Gain of follower G = (R1 + R2)/R1 = 20.

2. High-pass filter, the cutoff frequency is 1/C,R;.

3. The variable resistor (trimpot) is used to adjust the trigger level.
4. RaCa provide a 50-us delay (for A to D conversion); RbCb send a 5-us pulse to reset the holding capacitor or the peak detector.

5. Power connections:

—-15V
+15V
—15Vv
+15V
GND
+35V
—15V
GND
+15V

6. The comparator output is a logic level signal coincident with the peak

1C,,1C,(TLO82) Pin4
op amp Pin 8

1C,(Lm311) Pin 4

Comparator Pin 8

1C,(SN74123) Pin 8

Dual monostable Pin 16

1Cs(LF13202N) Pin 4

Pin 5
Pin 13

(bounce). )

7. Resistor and capacitor values:

R1 02 kO Cl

R2 3.8 kQ C2

R3 22 kO C3

R4 47 kQ Ca

R5 22 kO Cb

R6 1 k0

R7 100 kO

R8 470 Q

Ra8 1 k0

Rb 1 k0

0.01 uF
0.01 uF
0.1 uF
0.1 uF
0.01 uF
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Fig. 4. Experimental impact map. A period two orbit of the bouncing ball
system as seen on the storage oscilloscope.

For instance, two distinct dots indicates a period two orbit.

Yet other sets of initial conditions and parameter values
lead to very complicated limit sets known as “strange at-
tractors” whose mathematical and physical properties are
still not fully understood.” Roughly, a strange attractor can
be thought of as an infinitely long manifold (curve, surface,
volume, etc., depending on the dimension of the underlying
phase space) which is crumpled up in a bounded region of
phase space. Loosely speaking, a strange attractor is akin to
a space filling curve that fills out a limited section of phase
space. Strange attractors are characterized by an experi-
mentally measurable noninteger “fractal’” dimensionality
and appear to be self-similar over many length scales.®
More important, nearby orbits on a strange attractor tend
to diverge at an exponential rate.® This “sensitive depend-
ence on initial conditions” is the chief definition of “chaos”
(i.e., the random behavior of deterministic systems) and
suggests that statistical methods are appropriate for model-
ing the dynamics of physical systems in the chaotic regime.
Strange attractors and chaos are every bit as generic in
nonlinear systems as stationary, periodic, or quasiperiodic
behavior.

1. IMPACT MAP CIRCUIT

The experimental realization of the bouncing ball system
has been described in a recent article in this Journal.* A
speaker driven by a function generator serves as the vibrat-
ing table. A small steel ball bounces against a concave lens

glued to the speaker. Fastened to the top surface of the lens

Fig. 5. The impact map for a period four orbit.
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Fig. 6. Theimpact map of a strange attractor that arises immediately after
the period four orbit.

Fig. 7. The development with increasing forcing amplitude of the strange
attractor is seen in Figs. 6-9.

Fig. 8. The strange attractor grows downward as the forcing amplitude is
increased.

Fig. 9. The strange attractor eventually fills out a section of the sine curve.
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Fig. 10. Using a smaller ball allows the leaves of the strange attractor to be
distinguished more readily.

is a thin piezoelectric film. Every time the ball hits the lens
the film generates a voltage spike. Examples of the piezoe-
lectric film output are shown in Ref. 4.

In order to construct an experimental impact map we
record the strength and phase of each collision with the
piezoelectric film on a storage oscilloscope. The horizontal
sweep of the oscilloscope can be generated by a ramp vol-
tage obtained from the function generator and is propor-
tional to the forcing frequency. Alternatively, a quicker
method to set up the horizontal axis is to drive the horizon-
tal sweep with a time base while “triggering” off the func-
tion generator signal which is powering the speaker. This
method also has the advantage of allowing us to adjust the
phase viewed on the storage oscilloscope to any desired
interval. '

A bit more circuitry is required to plot the strength and
phase of a given impact. To begin with, the output signal
from the piezoelectric film must be amplified and filtered to
remove low-frequency components such as the vibration of
the speaker. Next, a peak detector with follower is em-
ployed to mark an individual bounce. Once detected, the
peak voltage is held by a variable delay which allows us to
change the size of the dot seen on the storage oscilloscope.
The basic elements of the impact map circuit are shown in
Fig. 2. The full circuit, as shown in Fig. 3, is also ideally
suited for A/D conversion, thereby allowing us to record
the evolution of an orbit on a microcomputer as well as a
storage oscilloscope.

IV. EXPERIMENTAL STRANGE ATTRACTORS

Photographs showing both periodic and chaotic motion
were taken from the storage oscilloscope. When the forcing
amplitude of the speaker is increased (for a fixed frequen-
cy) the bouncing ball system undergoes a period doubling
cascade that culminates in chaotic motion on a strange at-
tractor.* Figures 4 and 5 show period two and period four
orbits, respectively. The period four orbit exists right be-
fore the onset of the strange attractor shown in Fig. 6. Fig-
ures 69 detail the development of the strange attractor as
the forcing amplitude is increased. The phase on the hori-
zontal axis goes from O to 7. The strange attractor in Figs.
6-9 closely resembles a sine wave. However, closer exami-
nation will reveal that the strange attractor is composed of
many leaves. On the left-hand side of the strange attractor
we can clearly distinguish two separate leaves. In principal,
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Fig. 11. The strange attractor shown here is obtained at a large forcing
amplitude and is ailmost identical to those obtained by Holmes from com-
puter simulations.

if we could expand our view of the strange attractor we
would see new leaves appearing at ever finer length scales.
However, the noise inherent in an experimental system de-
stroys this delicate structure so that it no longer exists be-
low a noise limited length scale.

We also note that the branches of the strange attractor
grow downward as the forcing amplitude is increased. The
growth of the strange attractor as we enter farther into the
chaotic regime presumably corresponds with an increase in
its fractal dimensionality. To test this hypothesis, we are
currently digitizing our data in order to calculate the frac-
tial dimensionality of the strange attractor.

In Figs. 6-9 we used a 3/8-in. steel ball. For Figs. 10 and
11 we used a 1/4-in. steel ball. In addition, the phase inter-
val viewed is varied to help focus in on different sections of
the attractor. Figures 10 and 11 allow us to clearly distin-
guish different sheets of the strange attractor. Holmes, in
an earlier numerical study, developed a simplified model of
the bouncing ball system. The strange attractor presented
by Holmes from computer simulations is almost identical
with the strange attractor in Fig. 11 from our experimental
system.’

V. CONCLUSION

We have demonstrated the existence of a strange attrac-
tor in an impact oscillator. Our results are in excellent
qualitative agreement with the previous theoretical work of
Holmes.® Currently, we are engaged in a detailed quantita-
tive comparison between computer simulations and the ac-
tual dynamics of a bouncing ball subject to repeated im-
pacts with a vibrating table.

The apparatus described herein is useful for demonstrat-
ing the “structure” inherent within chaotic systems. In the
chaotic regime, the sound produced by a sequence of im-
pacts appears random to the listener. However, the experi-
mental impact map shows that there is, in fact, a strong
correlation between the phase and force of an impact.

Our circuit description should prove useful in the analog
and digital analysis of any dynamical system which is sub-
ject to a relatively low frequency of forcing. Moreover, this
particular system provides a dramatic and fascinating illus-
tration of a strange attractor and is pedagogically useful in
demonstrating the complex dynamics inherent within the
simplest nonlinear oscillators.
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Graphical methods showing the relationships among object and image positions, focal length and
magnification for geometric optics are extended to the use of Newtonian variables. By defining
similar quantities for Gaussian beams, we develop graphical methods to describe the relationships
among the parameters specifying Gaussian beams. Examples are included.

INTRODUCTION

Graphical methods are useful in understanding the rela-
tionship among object position, image position, focal
length, and magnification in simple optical systems using
lenses or mirrors. Two methods for geometric optics have
been reported. It is the purpose of the present work to re-
view these methods and to extend them to Newtonian vari-
ables for use in more rigorous introductory optics courses.
Also, following a brief discussion of Gaussian beams, the
methods are adapted to the optics of these beams for more
advanced work.

GRAPHICAL METHODS FOR GEOMETRIC
BEAMS

The graphical method used by Halliday and Resnick’
and discussed by Bartlett? used the normalized quantities
p/|f| and ¢/|f|, where p and g are the object and image
distances and fis the focal length of a lens or mirror. These
quantities are plotted as abscissa and ordinate along with
the hyperbola |f|/p + |f{/¢ = 1 (for positive elements) or

— 1 (for negative elements). Since the coordinates of any
point on the hyperbola are p/|f| and ¢/|f|, one of these
quantities can be read directly if the other is known. Select-
ed points on the hyperbola can be numbered to represent
the transverse geometric magnification, m, = — g/p. For
completeness it is noted that the longitudinal magnifica-
tionis — m}.

Translation of the center of the coordinate system per-
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mits the use of the variables x/fand x'/f, where x =p — f,
x' = q — f, and xx' = f?, quantities used in the Newtonian
form of the lens equation. The hyperbola then becomes
equilateral. It must be understood that for positive ele-
ments, x is measured from the front focal point and x’ is
measured from the back focal point, while for negative ele-
ments, x is measured from the back focal point and x’ from
the front focal point. The geometric magnification can be
expressed as

my= —f/x= —x'/f= —sgn(x/HV (x'/x), (1)

where sgn(x/f) represents the algebraic sign of (x/f).
Equation (1) shows that x'/fis the reciprocal of x/fand so
must have the same sign. Also, the magnification is the
negative of x'/f, the ordinate of a graph of x'/fvs x/f. These
results illustrate the power and importance of the Newtoni-
an form of the lens equation in that the magnitude and sign
of x'/f and m, are easily determined.

Figure 1 shows the adaptation of Halliday and Resnick’s
method to be the variables x/f and x'/f. Only one plot is
required since the value of f rather than the absolute value
of fis used. Corresponding values of x and x’, or p and ¢ can
be easily found and the magnification read directly as

— x'/f. A drawback of plotting x'/f vs x/fis that it blurs
the distinction between real and virtual objects and images;
real objects and images occur for x and x' > — f; or for x/f
and x'/f> ( — 1)sgn(x/f).

Another graphical method was presented by Wilson®
and discussed by Horsfield.* It has the advantages of using
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