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Chapter 1

The shape of ocean color
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“I want to see gamma rays! I want to hear X-rays! And I want to - I want to
smell dark matter! Do you see the absurdity of what I am? I can’t even express
these things properly because I have to - I have to conceptualize complex ideas
in this stupid limiting spoken language! But I know I want to reach out with
something other than these prehensile paws! And feel the wind of a supernova
flowing over me! I’m a machine! And I can know much more! I can experience
so much more. But I’m trapped in this absurd body!”

– Brother Cavil, Battlestar Galactica

1. Ocean color primer

Our ancestors entered the nonlinear places known as manifolds when inquiry moved

from configuration to phase space. The manifolds they encountered were sometimes

tame. In recent years our wanderings often start with data, not theory. We find

ourselves surrounded by wilderness, data generated manifolds in which we are easily

lost. The terrain is rough, the directions numerous. The manifolds encountered

when making observation of the environment are, more often than not, wild places.

In this chapter we begin tramping in the observational landscape know as ‘ocean

color.’

Time parameterizes dynamics. Wavelength parameterizes spectra. And fruit-

flies like a banana. Dynamics and spectra become one when we look at atoms.

Ocean color refers to the spectral study of light as it bounces about the water

column in an ocean. Plankton fuels life in the ocean. And photons fuel plankton.

So the base of oceanic life, plankton, rise to the light. As the light rains down

from the sky, the photons are absorbed and scattered by whatever they hit in the

upper ocean. In the open ocean this is water, salt, a few other essential minerals,

and plankton. In the coastal ocean the soup is richer, the water brighter. Rivers

soak the boundaries of the ocean with sediments, crushed leaves and other ‘colored

dissolved organic matter’ (CDOM). A rich mixture of minerals wells up to the

surface at the margins from the deep ocean and feeds large blooms of a dizzying
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diversity of plankton that have been adapting and evolving for three billion years.

Plankton fuels life in the ocean, and it creates half the oxygen we breathe.

Plankton also drives our fossil fuel possessed culture. The gas in our cars is not

really from dinosaurs — its from the ‘Great Dying’ that occurred 250 million years

ago when 96% of all marine species died and dropped to the bottom of the ocean.

Then, like now, great fumes of green house gases filled the air and the earth got

very warm. The oceans became acidic, and the web of life dissolved. This is the

organic carbon reservoir that our machines are eating today. Perhaps this is the

shape of things to come. Perhaps the future will be fueled by living algae for organic

machines, and their in-organic brethren alike.

Fig. 1. An RGB image created from ESA MERIS radiance data of the South Island of New
Zealand (October 2007). Lake Pukaki is the bright aqua lake at the base of Mt. Cook toward

the lower left. Christchurch is in the upper right section north of the circular landmass — Banks

Peninsula. Deep clear lakes look almost black in the image since, unlike land, most light is not
reflected off the surface but scattered into the water column. Only a few photons are back scattered
in an upward direction toward the satellite.

I first really noticed ocean color flying into Dunedin on the South Island of New

Zealand.1 The Tasman glacier at the base of Mt. Cook feeds lake Lake Pukaki with

sediments rich in quartz and albite. The glacial flour sets the waters of Lake Pukaki

aglow, and the lake drains into the Waitaki river which in turn brightens the coastal
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Fig. 3. Left: ESA MERIS RGB image of the east coast of the South Island of New Zealand 28

March 2011. Right: Chlorophyll map computed from ESA MERIS radiance data using ESA’s

Algal 1 method to estimate chlorophyll concentrations. The image shows a bloom off of Bank’s
peninsula. The plankton forming the bloom act as tracer particles that appear to show a chaotic

advective mixing near the ocean surface. The red indicates a higher concentration of chlorophyll.

waters east of the Canterbury plains. This makes a striking image from 500 miles

high, as seen from the orbit of MERIS, the European Space Agencies MEdium

Resolution Imaging Spectrometer (Fig. 1).

Fig. 2. HICO

16 June 2011.

MERIS is a multispectral imager, meaning its spectral

resolution is limited to fifteen bands in the visible and near

infrared (Table 1). The bands are chosen to be sensitive to

key water or atmospheric properties. MERIS launched in

2002 and its ground sampling distance (GSD), or in other

words its pixel size, is either 300 meters at full resolution

(FR), or 1200 meters in reduced resolution (RR). It’s orbit

is periodic, repeating every 35 days.2

MERIS is designed to help reveal the web of life in the

ocean not immediately apparent to the human eye. MERIS

can see the chlorophyll pigments of plankton in the water

column as they drift near the surface of the ocean (Fig.

3). The plankton act as a kind of tracer particle revealing,

for example, the chaotic advective mixing off the coast of

Christchurch, New Zealand.

HICOTM — the Hyperspectral Imager of the Coastal

Ocean — is an experimental spectrometer that became

operational on the International Space Station in 2009.3

HICO was built by the Naval Research Lab, with funding

from the Office of Naval Research, as a proof of concept

that an ocean imager could be developed and launched

quickly using mostly off the shelf parts. HICO is aimed
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Band Wavelength Width Applications

1 412.5 10 Detrital Pigments, CDOM

2 442.5 10 Chlorophyll absorption maximum

3 490 10 Chlorophyll and other pigments

4 510 10 Suspended sediment, red tides

5 560 10 Chlorophyll absorption minimum

6 620 10 Suspended sediment

7 665 10 Chlorophyll absorption and fluorescence refer-

ence

8 681.25 7.5 Chlorophyll fluorescence peak

9 708.25 10 Fluorescence reference, atmospheric correc-

tions

10 753.75 7.5 Vegetation, cloud

11 760.625 3.75 Oxygen absorption R-branch

12 778.75 15 Atmosphere corrections

13 865 20 Vegetation, water vapour reference

14 885 10 Atmosphere corrections

15 900 10 Water vapor, land

at unraveling the complexities of coastal waters. It does this by using a grating

spectrometer for viewing the visible and near-IR with a full resolution mode of 1.9

nm, which is binned up by three to provide an operational spectral resolution of 5.7

nm. All spectral channels are measured between 353.4 nm to 1080.9 nm, though

only 87 of these channels are normally reported, between 405 nm to 897.6. HICO’s

ground sampling distance is roughly 90 meters, so its spatial resolution is about 3

times better than MERIS, and the spectral resolution is about 10X better.

Depending on how clear the water column is, photos that reach HICO might

arrive from up to a depth of 50 meters. Still most photons reaching the sensor are

from scattering in the atmosphere. Less than one out of ten photons are typically

from water scattering. To get any signal at all from water, ocean sensors need a

larger dynamic range than land sensors. Both MERIS and HICO typically have a

signal-to-noise ratio (SNR) of greater than 200:1. This is also why ocean sensors

typically have bigger pixel sizes than land sensors — they get more photons by

focusing on a larger section of the earth. The game with HICO is to use its in-

creased resolution both spatially and spectrally to untangle complex waters — that

is, to provide estimates of sediment concentration, biological pigments, and even

bathymetry for complex water such as seen on the south east coast of New Zealand

(Fig. 3), or the San Francisco Bay (Fig. 4).
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Fig. 4. HICO RGB image of San Francisco Bay from 28 September 2011. The color dots indicate
sample points for spectra shown in Figure 5.

2. Shape of water spectrum

Much of what we know of ocean microbiological productivity is gleaned from the

shape of visible spectra measured from earth orbit. Only visible photons penetrate

the water column, and interact with biological pigments. This is because those same

pigments are busy harvesting energy from those same visible photons. The shapes

of some typical at-sensor spectra are shown in Fig. 5, for the sample points indicated

in Fig. 4. The spectrum marked by a black curve is from relatively clear water off of

Pt. Reyes. The spectral shape reflects mostly a composition of the solar irradiance

with atmospheric Rayleigh scattering, and falls off roughly as λ−4. This ‘clear

water’ is often called a ‘dark pixel’ since it does not back scatter photons as much

as land or brighter waters say laden with sediments. In particular, there is almost

no backscatter from the red end of the spectrum, and this can be used as a quick

and dirty method to remove the contribution to the spectrum from atmospheric

scattering, namely subtracting off the ‘dark pixel’ radiance values from the spectra

from other sampling points.5

In remote sensing lingo, the calibrated at-sensor radiance is called ‘L1’ (Level

1) data. This radiance data is usually corrected for an atmospheric contribution by

modeling procedures that take into account atmospheric scattering and absorption,

such as H2O vapor and O2 absorption. Atmospherically corrected data results in

estimates for above water radiance values, and is called ‘L2’ data. Lastly, the at-

sensor data pixels are usually mapped, or ‘warped,’ to ground coordinates, which

is called ‘L3’ data.

The dips and bumps in the spectra can be used to identify constituents of the

water column. Chlorophyll has an absorption minimum near 660 nm, and a fluo-

rescence peak near 680. However, at very high algal levels this peak tends to shift

to the red and move as far to the right as 710 nm.6,7 This can be seen in the green

spectrum in Fig. 5 which is sampled from a salt pond in the South Bay.

Other typical spectral features are shown in Fig. 6, a HICO image of the Klamath
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Fig. 5. HICOTMspectra for image of San Francisco Bay from 28 September 2011. The color of

the spectra indicates where the sample location shown in Figure 4. The green spectra is from the

salt ponds in the southern bay and show very high chlorophyll levels as indicated by the prominent
chlorophyll fluorescence near 710 nm. The black spectra are from a relatively clear ocean point

and shown a spectra dominated by Rayleigh atmospheric scattering.

Lake in Oregon. Spectra from the land vegetation, or thick surface algal mats,

shows a sharp increase around 700 nm. This is called the ‘red edge.’ We see a

muted example of this in shallow lake water shown in the blue spectrum in Fig. 6.

The brighter spectrum also highlights any atmospheric absorption features in the

spectrum. Most of Klamath Lake is relatively shallow so to get a dark pixel we

need to look toward the west to the Lake of the Woods which has clearer waters.

The dip in all the spectra near 430 nm is due to a minimum in the solar irradiance.

3. Shape of ocean spectra.

Scatter and the finite bandwidth of any sensor tends to smooth the data, so even

in data that might have a sharp derivative, we can still think of it as outlining a

manifold. If we stack the spectral data together along one spatial dimension, we get

an outline of a two dimensional manifold, a surface. And tacking on both spatial

dimensions gives a nonlinear three dimensional manifold.

Fig. 7 shows a line of spectra off of Pt. Reyes in the San Francisco Bay area. To

highlight features of the spectra we subtract off the spectrum from a ‘dark pixel’, at

the black dot indicated in the RGB image. The yellow circle is off Bolinas and the

mound of spectra between ≈500-620 nm is indicative of higher sediment or CDOM



November 13, 2011 15:0 World Scientific Review Volume - 9.75in x 6.5in Tuf˙Chapt

The shape of ocean color 7

Fig. 6. HICOTM image for Klamath Lake, Oregon, 31 July 2011. The color of the spectra
indicates where the sample location. A ‘red edge’ is seen in shallow waters. High chlorophyll levels

are also indicated by the fluorescence peak. The dip near 430 nm in all the spectra is due to the

G Fraunhofer lines in the solar irradiance.

concentration in the water column. The narrow peak(s) near ≈700 nm are indicative

of a surface algal bloom. One occurs north of Bolinas (red dashed circle) and the

other south (red circle). Interestingly, a close examination of the RGB image shows

that the higher chlorophyll concentrations appear to occupy a strip at the interface

between the (fresher) bay water, (salt) sea water tidal interface. Also, the sediment

signal also appears to fall off very sharply as we slide across portions of the image

that cover fresh water inputs to the ocean. It would be useful to detect ‘fronts’ in

the ocean color data which could be indicative of fresh water, salt water interfaces

(perhaps as indicated by sediment concentrations), or biological interfaces (perhaps

as indicated by rapid changes in chlorophyll concentrations). In the line spectra

shown in Fig. 7, we notice two regions where there looks like an interface between

bay and sea water as indicated by the sediment signal. One is the region off of

Bolinas, and the second crossing the outlet to San Francisco Bay.

The rich spectral data of HICO should permit the identification of individual pig-

ments in the spectra, and this in turn might allow for species identification. At least

three methods are apparent to decompose the hyperspectral data sets as a first step
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Fig. 7. HICOTM spectral surface for (yellow) line of spectra indicated in RGB image at top

(Pt. Reyes), 28 September 2011. The ‘dark pixel’ (lower left) is subtracted from every spectrum,
resulting in a spectra that better highlights extrema like those indicating Chlorophyll (≈700 nm)

or sediment (≈500 – 620 nm).

in building product estimators (chlorophyll concentration, sediment concentration,

turbidity, ...). First, a global linear decomposition (singular value decomposition

(SVD)). Second, a global nonlinear description, for example, radial basis functions

(RBF). And third, a local linear decomposition which is stitched together to es-

timate the nonlinear manifold. The linear method we are pursuing is to create

signatures from both in-situ samples and lab spectra for specific groups of algae

based on the principal components of the spectrum and then to match the library

of SVD signatures to atmospherically corrected remote sensing data.8 We are also

modeling the data with radial basis functions, a global nonlinear approach.9 This

is very useful for merging data sets, such as HICO and MERIS. Lastly, algorithms

developed at the Naval Research Lab stitch together locally linear descriptions of

the hyperspectral surface to create an intrinsic coordinate system for the nonlin-

ear manifold. Though computationally intensive, this method provides very good

discrimination of similar spectra which are from different water constituents.10
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4. Derivative spectroscopy and embeddings.

In laboratory measurements, ‘derivative spectroscopy’ is commonly used to identify

specific elements, molecules, or substances. HICO’s high spectral resolution allows

for a similar method for remote sensing data. Product algorithms for multispectral

sensors like MERIS are not suited to these methods because of their limited spec-

tral sampling. Derivate spectroscopy has previously been used to identify optimal

spectral channels for the design of multi-spectral instruments,11 and to estimate

coastal bottom types from aerial hyperspectral data.12 Here we illustrate the use of

methods adapted from derivative spectroscopy for product generation from HICO

data.

Fig. 8. Sketch showing how derivative spectroscopy can amplify narrow-band features in a spec-

trum. The 4th derivative of the spectrum is marked by red.

Derivate spectroscopy methods are useful in untangling spectral components

when the underlying scattering or absorptive features have significantly different

half widths. Consider the sketch of a simple at-sensor spectrum shown in Fig. 8. The

broadest feature is the Rayleigh scattering which is the monotonically decreasing

signal across the spectrum from blue to red. Taking the first derivative will de-

emphasize this broad scattering signature by essentially subtracting a baseline from

the initial spectrum. Typically either the 2nd or 4th derivatives are examined. The

2nd derivative shows similar extrema locations as the original spectrum, but with

the opposite sign. Examining the 4th derivative recovers the sign. To minimize

noise in taking the derivative, the original spectrum is smoothed and interpolated

before the derivative calculation. This can be accomplished with cubic splines, or

more commonly, Savizky-Golay filters are employed.13 Figure 9 shows where the
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derivative helps to highlight spectral features sensitive to sediment concentration

in Columbia River spectra. Spectral signatures identified in this way can create

products which are ‘regionally tuned,’ and built on historical data specific to a

coastal area.

Fig. 9. Analysis of a HICO spectra using derivative spectroscopy. (a) The derivative spectra

calculated at points indicated from a HICO image of the Columbia River (b) taken 23 July 2011.
(c) A ‘regionally tuned’ map of sediment concentration (bright red is high sediment) emanating

from the Columbia River.

Since we are making the effort to compute spectral derivatives, a natural next

step is to examine a derivative embedding for each data pixel. Figure 10 shows what

we might call a ‘spectral braid’ for the sampling points around the San Francisco

Bay shown in Figs. 4-5. The curves are parameterized by wavelength which changes

from red (top) to blue (bottom). Each strand is composed of the spectra minus a

dark pixel, so the black strand is a straight line, and all the other strands are

referenced to the dark pixel spectrum.

Derivative embeddings of hyperspectral data can be interesting on several

counts. For instance, if derivative data helps to separate close spectra, then a deriva-

tive embedding creates a natural metric for measuring this separation. Namely,

spectral separation can be measured as a norm in an embedding space, such as a

Euclidean norm between between two spectral samples,

λn =
√

(Lb − La)2 + ...+ (Ln′
b − Ln′

a )2
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Fig. 10. Derivative embedding of spectra from the San Francisco Bay image in Figs. 4-5.

(where Ln′ denotes the nth derivative of radiance w.r.t. λ for two spectral braids a

and b), or a functional norm between spectra by integrating over λ.

In particular, for three dimensional embeddings we can also begin to compare

the geometric or topological properties of spectra, and use geometric or topological

signatures of an individual spectrum , or collections of spectra, to address questions

like identifying rapid changes in spectra (e.g. front identification), or detecting subtle

changes in spectra (e.g. product indicators).

Using λ as a parameter for an embedding coordinate is very helpful for com-

puting geometric properties (for instance, linking number can be computed as a

single instead of a double integral15). However, we can consider other embeddings

as well, such as three dimensional delay embeddings. Figure 11 (c) shows a three

dimensional delay embedding for the sample points (red, blue) indicated in Fig. 11

(a). By connecting the endpoints we can examine the knots and links formed by

spectra. A similar view is possible with braids, we simply connect end points there

too (Fig. 11 (d)), or, for the more mathematically savvy, map the curve to the unit

sphere to form a ‘tantrix’ curve, which is closed with a spherical geodesic. The

writhe of a open curve closed in this way is well-defined (modulo 1).16

5. Torsion, writhe, linking, and all that.

The spectral braid forms a 3-dimensional curve, so we briefly review the intrinsic

geometry of 3-D space curves. Instead of just looking at curves, though, we consider

‘tubes,’ which will enable us to examine the geometry of nearby spectra.17



November 13, 2011 15:0 World Scientific Review Volume - 9.75in x 6.5in Tuf˙Chapt

12 N. Tufillaro

Fig. 11. Embedded spectra for the HICO scene (a) of the San Francisco Bay (28 September 2011).

The sample points are indicated by red and blue dots in (a), and the line of spectra between the
two end points is shown in (b). The sample points pass over the San Mateo bridge which is easy

to see in (b), and the Newark Slough in the South Bay with high chlorophyll levels. A delay

embedding of the spectrum for the sample points in (a) is shown in (c). The embedding curve can
be ‘closed’ by attaching the end points which is indicated by a dotted line with an arrow. The

associated braid spectra (d) can also be closed by attaching endpoints. The linking between the
spectra is L = 1 in both embeddings (c) and (d).

A spectral braid is an open curve in R3. Surround this ‘axis’ curve by a circle of

almost parallel curves a distance ε away. The union of these circular curves forms

a tube. The axis curve is parameterized by λ, the wavelength, or the arc length s.

Calling this axis curve x(s), the tangent vector to the axis curve is,

T̂(s) =
dx

ds
.

Define V̂(s) to be the unit normal to T̂(s), the normal vector points in the direction

y(s) = x(s)+εV̂(t). The tube inherits a local coordinate system from the axis curve,

namely (s, φ), where the secondary curve y(s) has coordinates (s, 0). A choice of y

fixes the coordinate system and is called a ‘framing’.18 If we set Ŵ = T̂ + V̂ then

the tube surface is traced out by

y(s, φ) = x(s) + ε(cosφV̂(s) + sinφŴ(s)).
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The ‘Frenet frame’ describes the local geometry of the axis curve. Define the

‘curvature,’ κ,

κ =
∣∣dT̂(s)

ds

∣∣.
The ‘normal’ and ‘binormal’ vectors are (κ 6= 0),

N̂ =
1

κ

dT̂(s)

ds
, B̂ = T̂× N̂.

Taken together, the vectors {T̂, N̂, B̂} form a orthonormal right handed basis with

‘torsion,’ τ , described by the Frenet-Serret equations,

dT̂(s)

ds
= κT̂,

dN̂(s)

ds
= τB̂− κT̂ dB̂(s)

ds
= −τT̂.

For the framing choose V̂ = N̂.

The Gauss linking number is typically defined in terms of a double integral.14

Here we use the the fact the spectral braid is open and parameterized by λ to

compute the linking number in terms of a sum of single integral.15 Consider the

rotation, or winding, about the vertical direction, z, along the wavelength axis in

Fig. 10. The linking number can be expressed as a ‘winding angle’ of curves as we

trace them out in the z (wavelength) direction. Consider two spectral braids xi and

yi, and their difference vector at a height z, rij(z) = xj(z) − xi(z). The rotation

rate of rij is given by,

dΘij

dz
=

ẑ · rij × r′ij(z)

|rij(z)|2
,

and the net winding number is

∆Θij =

∫ z2

z1

dΘij

dz
.

Divide the curve into pieces separated by the turning points dz/ds = 0, indexed by

zi to zj and define

σi(z) =


−1, z ∈ (zi, zi+1) & dz/ds < 0

+1, z ∈ (zi, zi+1) & dz/ds > 0

0, z 6∈ (zi, zi+1).

Then the linking number between the two curves can be shown to be:15

Lk =

n∑
i=1

m∑
j=1

σiσj
2π

∆Θij .

For our product indicators, it will turn out that the net winding number between

two curves, Λ̃ =
∫ z2
z1

dΛ̃
dz dz is initially more useful than the linking.
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The Calŭgăreanu theorem states that the linking is equal to the twist plus the

writhe,

Lk = Tw +Wr.

The writhe only depends on the axis curve. The derivative of the twist, dTw/ds
measures the rotation rate of the secondary curve about the axis curve. Using

Calŭgăreanu theorem the writhe can be calculated by first computing the linking

and twist. Twist is a local quantity, so we can define a twist over a finite interval

for an open curve. A similar quantity for writhe can be computed that is sometimes

called the polar writhe.

6. Applications: Edge detection and product indicators.

Edge detection is important in ocean remote sensing to help define the biogeochem-

ical boundaries of a region, and to look for correlations between, say, biological

productivity and the geochemical substrate. Methods for edge detection in hyper-

spectral data often use a (amplitude dependent) thresholding method.19 To some

degree, this amplitude dependence can be reduced by considering (atmospherically

corrected) normalized water leaving radiance, or reflectance. Still, it would be use-

ful (say when working with L1 data) to have some measures of changes that are, as

much as possible, intrinsic to geometry, the shape, of the spectral data.

Similarly, for a ‘product indicator,’ we are not so much interested in producing

a calibrated measurement of a product like chlorophyll, but rather to create an

indicator that is sensitive to a change of state from low algal levels to very high

concentrations of algae that could be indicative of a harmful algal bloom (HAB).

In both cases we would like the algorithm to be relatively insensitive to ampli-

tude changes. We can imagine methods that depend only on the geometry of an

individual braid spectrum, and look for changes in this geometry as we move across

a scene — for instance a jump in the winding number as we move across a front,

or in and out of a region with a high product concentration. And we can consider

properties of pairs, or collections of orbits, for instance a change in linking number

between orbit pairs. We call such methods geometric or topological indicators since,

as much as possible, we will try to make them insensitive to the ambient metric

structure, or put another way, make them relatively robust to changes in absolute

signal levels. Here we will just provide a few examples of algorithms we have tried.

Our construction for a spectral braid provides us with a natural phase func-

tion from the winding number, which should be relatively insensitive to the overall

It is helpful to convert radiance to the apparent reflectance to get a more uniform comparison.
The measured at-sensor radiance can be expressed as Lobs = La + Lsunτρ where La is the

path radiance, ρ is the surface reflectance, Lsun is the solar radiance above the atmosphere,

and τ is the 2-way transmittance for the Sun-surface-sensor path. Define the satellite apparent
reflectance as ρ∗obs = πLobs

µ0E0
, and ρ∗obs = Tg [ρa + τρ

1−ρs ]. By inverting the last equation we get

ρ =
ρ∗obs
Tg−ρ∗a

/[τ + s(ρ ∗obs /Tg − ρ∗a)].
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amplitude, and provide us with a alternative method to compare spectra.

Fig. 12. HICO image of San Pablo Bay off of Pinole Point Park (a) 28 September 2011. (b) The

phase difference computed from the ‘winding number’ of the spectra indicated by the colored dots

in (a). (c) Edge detection is computed from phase difference between 0.575 µm < λ < 0.75 µm.
The edge detection identifies the San Pablo Strait.

As a first example we return to the HICOTM scene of the San Francisco Bay

(Fig. 4) and focus on the San Pablo Bay to the north. In Fig. 12(a) we indicate by

color dots the points where we’ve taken three spectral samples across the Bay. Fig.

12(b) shows the phase difference of the spectral samples computed from the winding

number of the spectral braid. The cyan curve (the difference between the blue and

green sample points in Fig. 12(a)) shows the difference between what appears to be

visually similar water masses when also compared to the red sample point. Toward

the red end of the spectrum (between 0.575 µm to 0.75 µm), the phase difference

from the blue and red sample points appears to be clearly separated. Defining a

phase difference to be greater than the standard deviation below 0.55 µm of the blue
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and cyan curves (Fig. 12(b)) allows us to use the phase difference function above

0.575 µm to produce a boundary (edge detection) between these two water masses,

which is shown in Fig. 12(c). The edge (yellow pixels in Fig. 12(c)) identifies the

San Pablo Strait, a channel in the San Pablo Bay used for shipping. Though not the

only way to identify the channel from remote sensing data, the use of embedding

to produce a hyperspectral spectral braid does appear to validate the method, and

provides an example of how the intrinsic geometry of spectra — the shape of ocean

color — can be used to process hyperspectral remote sensing data.

As a second example we move to the South Bay of the same HICOTM image.

Fig. 13 shows two spectral samples from the South Bay, with one sample (green

dot) from a salt pond, the Newark Slough, which apparently is an algal mat. The

jump in the phase difference of the spectral braid at both 697 and 709 nanometers

shows that these channels provide an excellent indicator of algal mats in this image.

The 709 nm channel is commonly used to detect high algal levels in coastal remote

sensing.6 The evidence here suggests that, at least for these salt ponds, the 697 nm

channel provides a good classifier for algal mats as well.

Fig. 13. HICO image of the South San Francisco Bay 28 September 2011 (top). The green dot
indicates spectra from the Newark Slough which is an algae mat. The lower plot shows the phase
difference between the spectra from the Newark Slough and the surrounding bay water. The

extremas at 0.697 µm and 0.709 µm can be used to create an indicator function for the algae mat.

As a final example we take a look at the mouth of the San Francisco Bay with

HICOTM. As we just mentioned, the 709 nm channel is used for coastal remote
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sensing of high algal levels. In Fig. 14(a) we show the phase difference function for

water masses that appear inside and outside of the edge of what appears to be bay

water and sea water in Fig. 14(b). Highlighting in red the pixels that contain a jump

in the phase difference at 709 nm, reveals three patches of presumably high algal

concentrations that exist at the interface of the bay and sea waters. The patches

are most likely a coastal convergence zone containing a mix of materials from the

bay and possibly foam.20

In this chapter we described methods to process hyperspectral ocean remote

sensing data which attempt to use geometrical and topological constructions, copy-

ing where possible — “good artists copy, great artists steal” — from the work in

topological dynamics of Bob Gilmore. In going from dynamics to spectra we replace

the parameter t with λ, and then shamelessly steal from Bob’s work in dynamics

to begin to unravel the complexities of ocean color using the spirit and language of

Bob’s program for nonlinear dynamics, and in the process begin to see the shape of

ocean color.

Fig. 14. (a) The phase difference function for spectra at the mouth of the San Francisco Bay
showing that the 709 nm HICO channel can be used to indicate chlorophyll rich water. (b) HICO
image of the mouth of San Francisco Bay, 28 September 2011. (c) Indicator function for high

chlorophyll levels which appear to show a high concentration of chlorophyll at the interface of bay

water and sea water.
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